

Molecular Imaging Applications

- Oncology
- Cardiology
- Neurology

Finding targeted cells Identifying cell death Assessing the efficacy of therapy Delivering therapy to targeted cells

Imaging Techniques

Nuclear Medicine (PET, SPECT) Magnetic Resonance (MRI) Computed Tomography (CT) Ultrasound Optical Imaging

I	maging	Modalities
	Morphology	Physiology Metabolism Molecules
СТ		Dynamic, Perfusion
US		Dynamic, Flow, Perfusion
		10 ⁶ -10 ⁸ molecules/cell
MRI, MRS		Dynamic, Flow, Perfusion, Diffusion, Molecules
		1 molecule/cell
NM		Perfusion, Molecules
Fluorescence		molecules/cell
-Optical		Molecules

	Isotope	T _{1/2} [h]	Decay Mode (%)	Εγ [keV] (%)	Production Mode
β [†] -emitter	18 _F	1.83	β ⁺ , EC	635 (97)	Cyclotron ¹⁸ O(p,n) ¹⁸ F
	124 ₁	76.8	β ⁺ , EC	790 1530 2130	
	⁶⁴ Cu	12.9	β ⁺ (19.3) β ⁻ (39.6) EC (45)	654(19) 573(40)	reactor, cyclotron
	68 _{Ga}	1.14	β ⁺ (90) EC(10)	820 1895	⁶⁸ Ge/ ⁶⁸ Ga generator
	⁸⁶ Y	14.7	β ⁺ (33) EC(66)	1250(11) 1600(5) 2020(4) 2340(11)	Cyclotron ⁸⁶ Sr(p,n) ⁸⁶ Y
	Isotope	T _{1/2} [h]	Decay Mode	Εγ[keV] (%)	Production Mode
γ-emitter	99m _{Tc}	6.02	γ	141	⁹⁹ Mo/ ^{99m} Tc generator
	111	67.2	Auger, EC(100)	172(90) 247(94)	Cyclotron Cd(p,n) ¹¹¹ In
				_;	C0 C7
	67 _{Ga}	78.1	EC, Auger	93(38) 185(24) 300(16)	Cyclotron ⁰⁸ Zn(p,2n) ⁰⁷ Ga

[¹⁸ F]-FDG sy	nthesis
AcO ACO ACO ACO ACO ACO ACO ACO ACO ACO AC	HO H [−] HO H [−] HO 1 ⁸ F
Radiofluorination of a gluc nucleophilic displacen	ose derivative by nent reaction
Synthesis preparation time	Less than 5 minutes
Synthesis time	25 minutes
Production yield, not corrected for decay	Typical 60 %
Radiochemical yield, decay corrected	Typical 70 %
Residual activity at end of synthesis	< 0.5 %

	Macrophag LIVER T	e Imaging <u>'umor I</u> m	g Agent aging
High Macrophage	Uptake of SPIO by macrophages	No uptake	normal tissue
content in			
normal	Negative		
Tissue	enhancement due to the T2/T2*		
	effect of the SPIO internalized into		tumour

ME	1451	IMA	GING	PH I	NUDE
	Blood half- life	Normal tissue	Metastases	Contrast	Human Applications
MACROPHAGE IMAGING High Macrophage content in normal Lymph node	USPIO with T1/2 > 6 H are necessary to avoid major liver and spleen uptake for lymph node accumulation	Uptake of USPIO by macrophages Negative enhancement of normal tissue due to the T2/T2* effect of the USPIO internalized into	No uptake due to the absence of macrophages	normal tissue	Metastatic lymph nodes (Prostate, Uterine Head and Neck, Breast, Kidney, Rectum)
	Met	astatic			'Normal

