

Summary

- 1. Introduction: history and relative abundances
- 2. Electronic configuration: ionization energies and oxidation states
- 3. Spectroscopic properties: magnetic, optical. Applications.
- 4. Ionic properties: coordination number, radii
- 5. Reactions with water: hydration, hydrolysis
- 6. Inorganic complexes crystal structures by X-ray diffraction
- Inorganic complexes solution structures and structural equilibria by NMR

	TABLE 1.1					
	Chronology of Discovery					
	Year	Name	Discoverors	Origin of Name		
	1803	Cerium	M. H. Klaproth J. J. Berzelius W. Hisinger	After Ceres, newly discovered asteroid		
	1839	Lanthanum	C. G. Mosander	From Greek word lanthanein meaning "hidden"		
	1063	Terbium	c. g. mosander	AITEF TOWN OF		
		Erbium	C. G. Mosander	After town of Ytterby		
	1878	Ytterbium	J. C. G. Marignac	After town of Ytterby		
1788: "ytterbite" – new black	1879	Samarium	L. De Boisbaudran	After Russian mine official N.		
minoral		Nolmium	P. T. Cleve	From Latin name of		
in old mine (Ytterby.		Thulium	P. T. Cleve	After ancient name of Scandanavia. "Thule"		
Sweden)	1880	Gadolinium	J. C. G. Marignac	After J. Gadolin, discoverer of Yttrium		
1794: Yttrium - Gadolin	1885	Praseodymium	C. A. von Welsbach	From Greek words prasios and didymo: which mean "green		
		Neodymium	C. A. von Welsbach	twin" From Greek words neos and didymos meaning "new twin"		
	1886	Dyspresium	L. de Beiekaudran	From Greek word dysprositos which means "hard to obtain"		
	1889	Europium	N. Crookes	After Europe		
	1907	Lutetium	G. Urban C. A. Welsbach	After Latin name of Paris, "Lutetia"		
	1947	Promethium	J. A. Marinsky	From Promethius who		

Absorption	spec	tra –	UV/VIS		
 f → f electronic transitions: Minimal perturbation by ligand field: Narrow 	TABLE 1.4 Principal $f \to f$ (Leporte forbidden) Absorption Bands of Ln^{3+} in B_2O/D_2O Solutions ($r \ge 0.2$] mol^ - om $^{-1}$)				
-λ almost independent of complexation	Trivalent Unpaired Ion Electrons Absorption Bands (nm)			Color	
(visible)	La	0	none	colorless	
Weak intensity (forbidden by parity or	Ce	1	none	colorless	
Total mensicy (rorbidden by parity of	Pr	2	444.5, 469.0, 482.2, 588.5	green	
Laporte rule: unsymmetrical movement	Nd	3	345.0, 521.8, 574.5, 739.5, 742.0, 797.5, 803.0, 868.0	rose	
or charge)	Pm	4	548.5, 568.0, 702.5, 735.5	pink	
 Can get intensity from low symmetry or vibronic coupling 	Sn	5	362.5, 374.5, 402.0	yellow	
	Eu	6	375.5, 394.1	very pale pink	
- Some transitions are hypersensitive	Gđ	7	272.9, 273.3, 275.4, 275.6	colorless	
	ть	6	284.4, 350.3, 367.7, 487.2	very pale pink	
eg: Eu ³⁺ J = 0, 1, 2, 3, 4, 5, 6 ($^{7}F_{J}$)	Dγ	D	330.4, 365.0, 910.0	yellow	
	Но	4	287.0, 361.1, 416.1, 450.8, 537.0, 641.0	yellow	
	Er	3	364.2, 379.2, 487.0, 522.8, 652.5	rose	
	Tn	2	360.0, 682.5, 780.0	green	
	Чb	1	975.0	colorless	
f → d electronic transitions: Intense (allowed)	Lu	0	none	colorless	
- near-LIV or visible					

Ln luminescence spectra

Advantages relative to organic dyes:

- Very long luminescence lifetimes: 10 µsec to several hundred msec
- Very sharp emission bandsNo bleaching

Disadvantages: - Low intensity absorption

To obtain more intense luminescence, can used direct excitation using LASERS or sensitized luminescence

Ionic properties

Coordination number and geometry

- Highly variable: CN = 3 12 (8-9 most common)
- Ionic bonds in Ln(III) complexes
- → Coordination geometry reflects balance of electrostatic and steric interactions

Reactions with water

Hydrolysis

- Hydrolysis in water above pH 6:

 $Eu^{3+}_{(aq)} + H_2O_{(I)} \Leftrightarrow Eu(OH)^{3+}_{(aq)} + H^+$

Hydrolysis constant: $\beta_1^* = [Eu(OH)^{2*}]$ [H*]/[Eu^{3*}] log $\beta_1^* = -8.5$ (La) to -7.6 (Lu) at I = 0 \rightarrow hydrolysis easier for smaller Lu^{3*} ion

Reactions with water

Hydration

 $-\,\Delta H_{hyd}$ of Ln^{3+} increases with Z

(smaller radius, higher charge density, stronger ion-dipole interaction) - Primary coordination sphere: most common CN = 8-9

 [Ln(H₂O)₉]³⁺ in bromates and ethylsulfates, eg. [Nd(H₂O)₉]³⁺: tricapped trigonal prism Capped square antiprim almost as stable

-[Ln(H₂O)₈]³⁺: square antiprism

In solution: CN changes along Ln series: CN = 9 (La-Nd); 8/9 (Sm-Tb); 8 (Dy-Lu)
 Large second sphere of hydration

