Mn-Based MRI contrast
MEMRI neuro applications:

Bie Imaging Lab, University of Antwerp
Annemie van der Linden

evolved in the late nineties when Alan Koretsky (NIH) and associates pioneered the use of MEMRI for brain activity measurements as well as neuronal tract tracing

```
Using MnCl2 > Mn(2+)
```

Manganese-enhanced MRI (MEMRI)
relies upon the following three main properties of Mn(2+):
(1)it is a paramagnetic ion that shortens the $\mathrm{T}(1)$
(2) it is a calcium $(\mathrm{Ca}(2+))$ analog that can enter excitable cells, such as neurons and cardiac cells via voltage gated $\mathrm{Ca}(2+)$ channels
(3)once in the cells $\mathrm{Mn}(2+)$ can be transported along axons by microtubule dependent axonal transport and can also cross synapses trans synaptically to neighboring neurons

\forall How to get Mn2+ ions in the brain? Manganese administration routes

systemic injection of MnCl 2 :
intraperitoneal [i.p.]
subcutaneous [s.c.]
intravenous [i.v.]

Manganese administration routes
Systemic injections
Traversing the BBB?

- After a short systemic exposure, Mn2+ is cleared from the blood, in the range from minutes up to hours
- Increased influx into the brain > uptake mechanism at the level of the choroid plexus and the ventricular ependyma, rather than direct uptake through the BBB
- Identical results after intraventricular injection

Manganese administration routes
alternative administration routes
Traversing the BBB?

Alternatively, one can reversibly break the BBB
-by applying an osmotic shock during the intravenous infusion of Mn2+

Mn2+ can also be delivered directly into a particular brain ROI -Via olfactory epithelium and the eye (circumventing the BBB)

- or more invasive via focal brain injections

Chemical configuration and cellular uptake of manganese

Mn2+ uptake involves transport systems:
> calcium channels
> Na/Ca exchanger
> active calcium uniporter
$>\mathrm{Na} / \mathrm{Mg}$ antiporter
> divalent metal transporter DMT1 (also known as DCT1 and NRAMP2)
$>$ carrier-mediated, identity of the Mn2+-carrier(s) is unknown

Mn2+ efflux across the BBB
> does not appear to occur through a carrier but rather by diffusion

In excitable cells such as neurons

- Mn2+ can be incorporated by L-type voltage gated calcium channels
- This was verified by utilizing Ca2+ channel blockers (diltiazem or verapamil) which prevents the uptake of Mn2+ into cells. This has been verified in brain as well as the heart
- Additional support comes from the accumulation of Mn2+ in specific brain areas that contain neuronal populations with high spontaneous activity

\circlearrowleft
 Subcellular distribution and axonal transport of manganese

- The largest subcellular concentration of manganese is found in the mitochondria, endoplasmatic reticulum and lysosomes
- Excitable tissue, experiencing frequent Ca2+ spikes, is likely to accumulate mitochondrial Mn2+

Subcellular distribution and axonal transport of manganese

- mammalian axons exhibit two major anterograde transport processes with a differential speed
> Slow axonal transport 0.01- $0.33 \mathrm{~mm} / \mathrm{h}$ and transports mitochondria
Fast axonal transport $2-16 \mathrm{~mm} / \mathrm{h}$. within vesicles > Mn(2+)
- Interestingly, although the speed of fast axonal transport is constant, the amount of vesicles that can be transported per unit of time can change according to the neuronal activity

Subcellular distribution and axonal transport of manganese Transsynaptic transport mechanism

- Mn2+ released at the synaptic cleft within synaptic vesicles together with glutamate
- Mn2+ incorporated in the post-synaptic cells by ligandgated Ca channels such as NMDA receptors.

Fluorescence quenching techniques has shown this

MEMRI

neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)MRI
> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
> Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Activation-Induced Manganese-Dependent MRI (AIM)MRI

> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Activation- induced manganese dependent contrast (AIM)MRI
Lin and Koretsky, MRM 38, 378, 1997

0.3 \% halothane
$3.6 \mu \mathrm{~mol} / \mathrm{min} \mathrm{MnCl} 2$ infusion iv
A: intact BBB
B: unilateral BBB disruption
C: difference image
G: Mn infusion 30 sec before electrical forepaw Stimulation, and BBB rupture (mannitol)

Activation-Induced Manganese-Dependent MRI (AIM)MRI

> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
> Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Dynamic activation induced manganese dependent contrast (DAIM)MRI

Aoki et al, MRM 48: 927, 2002

Activation-Induced Manganese-Dependent MRI (AIM)MRI> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
> Tract tracing s.s.> Activity dependent MEMRI> Dynamic MEMRI: DMEMRI> Neuronal Connectivity> Remodelling of neuronal circuitries> Manganese Transfer Index> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake> Mn-binding enzymes> Microglial activations

For tract tracing one needs

- to target the area (inject MnCl 2)
from which the axonal projections start (shaping the circuit of interest)
- thus circumventing the BBB

1. Obvious for sensoric system (less invasive, remote from the brain)
2. Target nostrils (olfactory epithelium) to study the olfactory circuit
3. Target the retina to study the visual circuit
4. Target the auditory nerves to study the auditory system
5. Less obvious: injections in the brain targeting a nucleus of the circuit

Watanabe et al, MRM, 46, 424, 2001

Fig. 1 (sections indicated in Fig. 1). Enhanced structures are: (1) left retina, (2) left optic nerve, (3) optic chiasm, (4) right optic tract, (5) right lateral geniculate nucleus, (6) right brachium of the superior colliculus, (7) right pretectal region, and (8) right superior colliculus.

ME MRI tract tracing other circuits: the song control system

MEMRI
neuronal connectivity and activation
Activation-Induced Manganese-Dependent MRI (AIM)MRI
> Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI

> Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Activity dependent ME

Pautler and Koretsky, Neuroimage, 16, 441, 2002
Activation of the main olfactory bulb with common odours

FIG. 3. MRI images of the olfactory bulb of a mouse exposed to $\mathrm{Mn}^{\mathrm{It}}$ only (left) and $\mathrm{Mn}^{\text {+ }}$ plus amyl acetate (right). MEMRI images of the mouse were obtained 1.5 h after exposure to aerosolized Mn^{2+} abone or in the presence of amyl acetate. The localized accumulation of Mn^{2+} is seen as positive contrast enhancement in the olfactory bulb.

FIG. 2. Accessory olfactory bulb enhancement by MEMRI after exposure to pheromones and Mn ${ }^{2+}$. Areas enhanced are readily detected as bright regiors in axial (bft) as well as sagittal (right) slices. The arrowheads point to the bilaterally symmetric accessory olfactory bulb, which appears as bright circliss in the axial slike and is located caudal in the olfactory bulb and rostral to the main cortical areas in the saggital slice. Mice were exposed to pheromones (in the form of male mouse urine) as well $\approx \mathrm{Mn}^{2+}$ and enhancement inthe accessory olfactory bulb always exhibited positive contrass enhancament ($n=15$).
Activation-Induced Manganese-Dependent MRI (AIM)MRI
> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
$>$ Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
$>$ the least invasive approach
$>$ the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Dynamic Manganese Enhanced [DME]MRI

 the song control system- the dynamics of axonal manganese transport were monitored as manganese induced signal intensity (SI) enhancement in the projected areas
- Date are translated into a Hill plot (function describing a sigmoid curve)
- This so called Dynamic Manganese Enhanced [DME]MRI can then be used as a quantitative tool to monitor the activity of the projecting neurons in the injection area
Mn^{2+} is transported along axons of a circuit

Mn^{2+} is a biological Ca^{2+} analogue Mn2+ is paramagnetic

Mn^{2+} is transported along axons of a circuit

Mn^{2+} is a biological Ca^{2+} analogue

Uptake and transport activity dependent

Van der Linden et al. Neuroscience 122: 467, 2002

Accumulation of Mn^{2+} in Area X and RA

Area X

Study repeatedly the response of different neuronal populations in HVC to song using DME MRI

Tindemans et al. Eur. J. Neurosc: 18:3352, 2003

Follow Mn ${ }^{2+}$ uptake in RA and X

Study repeatedly the response of different neuronal populations in HVC to song using DME MRI

Tindemans et al. Eur. J. Neurosc: 18:3352, 2003

Thick lines and full squares show the song stimulated results $\mathrm{n}, \mathrm{SI}_{\max }$ provide a correlate for activity of that particular type of projecting neuron

Conclusion:

Different response of RA projecting and Area X projecting HVC neurons to song exposure

Differentiate the activity of neuronal populations from the same nucleus without having the resolution to do so..

Activation-Induced Manganese-Dependent MRI (AIM)MRI

> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
> Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Neuronal connectivity Connectivity Index (CnI)

Canals et al, NeuroImage 40, 458, 2008

- continuously infusing very low concentrations of Mn2+into the target area using osmotic pumps coupled to chronically implanted brain cannulae.
- corticofugal somatosensory and motor pathways in individual animals.
- describe a connectivity index (CnI) based on Mn2+ transport

MEMRI
neuronal connectivity and activation
Activation-Induced Manganese-Dependent MRI (AIM)MRI
> Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI

$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
$>$ Neuronal Connectivity
$>$ Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Remodelling of neuronal circuitries

NeuroImage 34 (2007) $1650-1657$
Changes in neuronal connectivity after stroke in rats as studied by serial manganese-enhanced MRI

Jet P. van der Zijden, ${ }^{\text {a, }, ~}{ }^{\text {a }}$ Ona Wu , ${ }^{\mathrm{a}, \mathrm{b}}$ Annette van der Toorn, ${ }^{\text {a }}$ Tom P. Roeling, ${ }^{\mathrm{c}}$ Ronald L.A.W. Bleys, ${ }^{\text {c }}$ and Rick M. Dijkhuizen ${ }^{\text {a }}$
${ }^{1}$ Image Sciences Institute, University Medical Center Utrecht, Bolognalaan 50, 3584 CJ, Utrecht, The Netherlands
${ }^{\mathrm{b}}$ Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Charlestown, MA, USA
${ }^{\circ}$ Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands

JOUFNAL OF MCCNETIC RESONANCE IMAGING 2\&8E3-870 (2207)
Original Research \qquad

Manganese-Enhanced MRI in a Rat Model of Parkinson's Disease

Galit Pelled, $\mathrm{PhD}_{1}^{1,2}$ Hagai Bergman, MD, ${ }^{3}$ Tamir Ben-Hur, MD, PhD, ${ }^{4}$ and Gadi Goelman, $\mathrm{PhD}^{1^{*}}$

Remodelling of neuronal circuits

- as a consequence of hyperactivity during seizures
- Sprouting of granule cell axons or mossy fibers is one of the most consistent neuropathologic findings in the hippocampus of animals or humans with temporal lobe epilepsy, providing one of the most extensively characterized examples of activity-induced axonal plasticity in the brain
- Nairismagi, J., Pitkanen, A., Narkilahti, S., Huttunen, J., Kauppinen, R.A., and Grohn, O.H., Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo, Neuroimage, 30, 130, 2006
intraperitoneal kainic acid injection epilepsy model

MEMRI signal in the dentate gyrus and the CA3 subregion of the hippocampus

injection of MnCl 2 into the entorhinal cortex both in control and kainic acid injected rats

A: ME MRI hyperintensity in the hippocampus of epileptic rat
B: corresponding silver staining (mossy fiber sprouting)
C: enlarged field of inner molecular layer (iml) showing sprouted mossy fibers
g : granule cell layer
h: hilus
1 mm scale bar

Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo

Jaak Nainismägi, ${ }^{\text {ab }}$ Asla Pitkänen, ${ }^{\text {b/ }}$ Susanna Narkilahti, ${ }^{\text {b }}$ Joanna Huttunen, ${ }^{\text {c }}$
Risto A. Kauppinen, ${ }^{\text {a,e }}$ and Olli H.J. Gröhn ${ }^{\text {a,* }}$

Univeraty of Eacyro, PO Bax 1027, FRN-702 2 II Sangia Finland

Manganese enhanced MRI detects mossy fiber sprouting rather than neurodegeneration, gliosis or seizure-activity in the epileptic rat hippocampus

Riikka J. Immonen, ${ }^{\text {a }}$ Irina Kharatishvili, ${ }^{\text {b }}$ Alejandra Sierra, ${ }^{\text {a }}$ Christine Einula, ${ }^{\text {b }}$ Asla Pitkänen, ${ }^{\text {b,c }}$ and Olli H.J. Gröhn ${ }^{\text {a,* }}$
${ }^{\text {a }}$ A.I. Virtanen Institute for Molecular Sciences, Biomedical NMR Research Group, Biomedical Imaging Unit, Department of Neurobiology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
${ }^{\mathrm{b}}$ A.I. Virtanen Institute for Molecular Sciences, Epilepsy Research Group, Department of Neurobiology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
${ }^{\text {c }}$ Department of Neurology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland

Remodelling of neuronal circuits

- Axonal plasticity
- MEMRI is a very useful method to examine network plasticity and regeneration in songbirds
- (review: Van der Linden et al, NMRB, 17, 602, 2004)

Song control system

NEUROPLASTICITY in SCS

Delicate balance between adult neurogenesis and cell death, cell volume and cell density changes : volume changes in song control nuclei

Creation of new axonal projections and dentrites: altered neuronal connectivity

Spring

Summer

Female starlings implanted with Testosterone or placebo

Unjuersiteit Aniverpers

In vivo MRI of seasonal volumetric and functional Plasticity of song control nuclei in relation to song output in female songbirds. Van Meir V. et al., NeuroImage 2006, 31(3):981-992.

Manganese uptake through the nostriles and transport to the OB (1 hour) upon smelling milfoil or no particular smell in different seasons

Activation-Induced Manganese-Dependent MRI (AIM)MRI
> Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI

$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
$>$ Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
$>$ the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Manganese Transfer Index (MTI)

Assessing Transneuronal Dysfunction Utilizing Manganese-Enhanced MRI (MEMRI)

Faridis Serrano, ${ }^{1}$ Mitchell Deshazer, ${ }^{1}$ Karen D.B. Smith, ${ }^{1}$ Jeyarama S. Ananta, ${ }^{4}$ Lon J. Wilson, ${ }^{4,5}$ and Robia G. Pautler ${ }^{1-3^{*}}$

Transneuronal efficiency of manganese ion (Mn2) movement is quantified by the manganese transfer index (MTI) as a means to assess overall changes in neuronal function.

Tested with pharmacological agents (MTI decrease)

- Isoflurane: decreases synaptic vesicle release
- Memantine: decreases postsynaptic uptake of Ca2 and Mn2

Applied in knockout mice with neuronal dysfunction

FIG. 1. a: The image demonstrates the region of interest (ROI) selected in the olfactory bulb (presynaptic) and olfactory cortex (postsynaptic). b: Cartoon explaining the concept of manganese transfer index (MTI). The MTI value assesses the transneuronal efficiency of Mn^{2+} ion and is defined as the ratio of the signal intensity in the postsynaptic neuron in relation to the signal intensity in the presynaptic neuron. MTI = signal intensity (postsynaptic neuron)/signal intensity (presynaptic neuron).
$\mathbf{M n C l}_{2}$ intranasally via nasal lavage

FIG. 4. Graph of the MTI value in age-matched 2 months wildtype ($n=7$, white bar) and APP-/- mice ($n=6$, black bar) and 12 months wildtype ($n=4$, white bar) and age-matched APP-/- mice ($n=3$, black bars). The data indicates that there is an age-independent decrease in the MTI value in the APP-/- mouse model, $\cdots P=0.0001 ; * P=0.0016$. Values represent an average in each group and their standard error (SEM).
Activation-Induced Manganese-Dependent MRI (AIM)MRI> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
> Tract tracing s.s.> Activity dependent MEMRI> Dynamic MEMRI: DMEMRI> Neuronal Connectivity> Remodelling of neuronal circuitries> Manganese Transfer Index> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake> Mn-binding enzymes
> Microglial activations

Axonal Transport Rates

Currently, there are NO OTHER methods available to measure in vivo axonal transport.

In vivo axonal transport rates decrease in a mouse model of Alzheimer's disease

Karen Dell Brown Smith, ${ }^{\text {a }}$ Verena Kallhoff, ${ }^{\mathrm{b}}$ Hui Zheng, ${ }^{\text {b,c,e,f }}$ and Robia G. Pautler ${ }^{\text {a,d,e,* }}$

[^0]These data indicate that in vivo axonal transport rates decrease prior to plaque formation in the Tg2576 mouse model of AD.

- The olfactory system of the mouse provides access to a well-defined white matter projection with minimal invasiveness to the animal.
- The olfactory system is targeted early in the time-course of AD making it an ideal target for monitoring disease progression
- a nasal lavage of MnCl 2

Axonal Transport Rates

Smith et al, NeuroImage 35, 1401 (2007)

The differences between Mn2+ treated and control mice (no Mn2+) demonstrate the increased signal intensity acquired using MEMRI.

Data were quantified as a function of change in signal intensity (Δ SI) over time (min). Slope of line acquired through linear regression.

The slope is reflective of the rate of axonally transported Mn2+

Axonal Transport Rates

Smith et al, NeuroImage 35, 1401 (2007)

Demonstration of the movement of Mn2+ (red)
through the olfactory bulb using sequential scans. ($\mathrm{B}, \mathrm{C}) 2 \mathrm{~min},(\mathrm{D}, \mathrm{E}) 12 \mathrm{~min},(\mathrm{~F}, \mathrm{G}) 22 \mathrm{~min},(\mathrm{H}, \mathrm{I}) 32 \mathrm{~min}$.

Arrow denotes region of interest located by finding the lengthwise midpoint of the olfactory bulb and extending That point out to the olfactory neuronal layer (ONL)

Axonal Transport Rates

Smith et al, NeuroImage 35, 1401 (2007)

B. gradual and significant decrease with age in the axonal transport rate of the $\operatorname{Tg} 2576$ mutant as percent of control.
C. raw data for WT controls and the $\operatorname{Tg} 2576$ animals at the three different ages.

Fig. 3. Axonal transport is dependent upon body temperature. At $37.0^{\circ} \mathrm{C}$ the SI increase in Mn^{2+} transport is $0.00679 \pm 0.001, n=10 \mathrm{vs}$. reduced temperature, $30.3^{\circ} \mathrm{C},-0.00131 \pm 0.002, n=10$. It also shows that the transport rate recovers with a return to normal temperature ($\square 0.00589 \pm 0.002, n=10$). Difference in Δ SI/Time (min) between both $37{ }^{\circ} \mathrm{C}$ groups and the $30.3^{\circ} \mathrm{C}$ group is significant $\left(^{*}\right)$ with a p-value of $<0.01, d f=29$ (one-way ANOVA).

Activation-Induced Manganese-Dependent MRI (AIM)MRI

> Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI

$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
$>$ Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates

Study neural substrate of awake behavior

$>$ the least invasive approach
$>$ the most invasive approach

'Non Neuronal Activity' but 'Neuropathology Related’ Mn uptake

> Mn-binding enzymes
> Microglial activations

- It has been demonstrated in mice and rats that an intraperitoneal (i.p.), intravenous (i.v.) or subcutaneous (s.c.) injection of MnCl 2 leads to unique MRI contrast revealing the neuroarchitecture of the brain
- Wadghiri, Y.Z., Blind, J.A., Duan, X., Moreno, C., Yu, X., Joyner, A.L., and Turnbull, D.H., Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development, NMR Biomed., 17, 613, 2004

Wadghiri et al NMRB, 17, 613, 2004
MEMRI provides an efficient and powerful in vivo method -for analyzing neonatal brain development -in normal and genetically engineered mice

Figure 1. MEMRI enhancement is maximized 24 h after i.p. injection of MnCl_{2}. Horizontal T_{1}-weighted GE images before (a) and 24 h after (b) injection of MnCl_{2} in an adult mouse brain show enhancement in olfactory bulb (OB), hippocampus(Hi) and cerebellum (Cb). Quantitative analysis

a-d: wild type
b-e: mild genotype Gbx2-CKO mutant mouse
c-f: Gbx2-CKO mutant mouse with severe deletion of vermis

systemic injections of manganese: the least invasive approach

study neural substrate of awake behaviour

- Brain activation in awake small animals can be monitored by performing MRI after the presumed activity has occurred preceded by a systemic injection of manganese
- MEMRI becomes then quite homologue to histological discrimination of IEG expression (cfos) as it highlights areas with prior activity but probably harbours the same drawbacks in terms of specificity
- This method has been proven capable of providing a sensitive and effective method for mapping the mouse auditory brainstem
- Yu, X., Wadghiri, Y.Z., Sanes, D.H., and Turnbull, D.H., In vivo auditory brain mapping in mice with Mn-enhanced MRI, Nat Neurosci, 8, 961, 2005
- MEMRI for 100 micron resolution tonotopic mapping of the mouse inferior collilulus (IC)
- 21 days old mice whereby the IC showed obvious differences in mice exposed to defined stimuli
(b) After broadband ($1-59 \mathrm{kHz}$) stimulation
(c) After high-frequency broadband ($20-50 \mathrm{kHz}$) stimulation
(d) After 40 kHz pure-tone stimulation: enhancement was restricted to an isofrequency band in excellent agreement with electrophysiological maps
- Intraperitoneal administration of MnCl 2 allowed longitudinal imaging starting even from early postnatal stages of mouse auditory brain development

An isofrequency band in excellent agreement with electrophysiological maps

Activation-Induced Manganese-Dependent MRI (AIM)MRI

> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
> Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Study neural substrate of awake behavior with more invasive approach

Chen et al, NeuroImage 37, 221 (2007)

ELSEVIER

Imaging unconditioned fear response with manganese-enhanced MRI (MEMRI)

Wei Chen, Jeff Tenney, Praveen Kulkarni, and Jean A. King*
University of Massachusetus Medical School, Department of Psychiaty, Center for Comparative Neuroimaging, 55 Lake Avenue North, Worcester, MA 01655, USA

Chen et al, NeuroImage 37, 221 (2007)

- Animals trained to restraining in magnet
- rats catheterised in the femoral vein and the right common carotid artery (CCA)
- After surgery, animals were returned to home-cages awake for scent and Mannitol administration.
- Rats were infused in the femoral vein with 120 mM MnCl 2 at a rate of ml / h for a total of 30 min in their home cage.
- after starting the infusion, a bolus of 20% D-mannitol was given into the right carotid artery at a concentration of $5 \mathrm{ml} / \mathrm{kg}$ via the prepared catheters.
- One minute after the mannitol injection, rats were exposed to either odorless air (control), lemon (novel/arousing) or TMT (fear-inducing stimulus) until the end of the 30 min infusion period
- After infusion awake restrained in MRI

Study neural substrate of awake behavior
 with more invasive approach NeuroImage 37, 221 (2007)
B. Fox (fear) smell activated the unconditional fear pathway: amygdala + hypothalamus
A. Lemon (novel) smell compared to fear-inducing odor demonstrated enhanced uptake in the cingulated and prefrontal cortices. In addition, as expected the hippocampus showed significantly enhanced manganese contrast after novelty exposure.

Neural substrate correlated with behaviour

Activation-Induced Manganese-Dependent MRI (AIM)MRI

> Dynamic AIM MRI: DAIM MRI
Tract tracing with MEMRI
$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
> Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
> the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations

Mn binding enzymes
Yang et al, MRM 59, 1329 (2006)
Magnotic Rescnance in Medicine 59:1329-1339 (2008)
Manganese-Enhanced MRI Detection of Neurodegeneration in Neonatal Hypoxic-Ischemic Cerebral Injury

Jian Yang, ${ }^{1,2}$ Pek-Lan Khong, ${ }^{3}$ Yanxin Wang, ${ }^{3}$ Andrew Chi-Yuen Chu, ${ }^{4}$ Shu-Leong Ho, ${ }^{4}$ Pik-To Cheung, ${ }^{5}$ and Ed X. Wu ${ }^{12^{*}}$

Mn-enhanced MRI (MEMRI) for detecting neurodegenerative processes by monitoring enzymatic activities of Mn-superoxide dismutase (Mn-SOD) and glutamine synthetase (GS), which are Mn-binding enzymes against the oxidative stress and glutamate excitotoxicity in neurodegeneration

Mn binding enzymes Yang et al, MRM 59, 1329 (2006)

Mn-superoxide dismutase (Mn-SOD) Glutamine Synthetase (GS)

Day 49 after Ischemic Insult

FIG. 8. Typical T_{1} M and $T_{2} \mathrm{WI}$ at day 49 after $\mathrm{H}-\mathrm{I}$ insult (late $\mathrm{H}-\mathrm{I}$ phase) from an H-I rat in Group 1 (firsk row's corresponding Mh-SOD and GS otaining at $\times 100$ with ocala bar $=100 \mu \mathrm{~m}$ (second row) and $\times 400$ with ocale bar $=50 \mu \mathrm{~m}$ (third row) in the ipailateral basal ganglia area ourrounding the oyot. Intenoive Mn-SOD otaining and etrong GS staining opatially correlate with the hyperintersity in the strong
$T_{1} W$.
> Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI

$>$ Tract tracing s.s.
> Activity dependent MEMRI
> Dynamic MEMRI: DMEMRI
> Neuronal Connectivity
$>$ Remodelling of neuronal circuitries
> Manganese Transfer Index
> Axonal Transport Rates
Study neural substrate of awake behavior
$>$ the least invasive approach
> the most invasive approach
'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
> Mn-binding enzymes
> Microglial activations and astrocytes
－Glial cells are non neuronal components of the CNS that interact closely with neurons and with each other
－There are 3 different types： astrocytes，oligodendrocytes and microglial cells
－They play an important role in neuroprotection， inflammation．．．

Glial cells，particularly astrocytes represent a ＂sink＂for brain manganese
－Contribute significantly to signal enhancements after manganese administration
Unlike neurons，astrocytes have the ability to concentrate Mn2＋at levels 50 －fold higher than the culture media
－Areas of high astrocyte density include the hypothalamus and hippocampus
Areas with low astrocyte density include the cerebral cortex，neostriatum， midbrain，medulla oblongata，and cerebellum
－This could only partly explain the observed differential contrast enhancements in the brain after systemic injection

In vivo MRI reveals the dynamics of pathological changes in the brains of cathepsin D-deficient mice and correlates changes in manganese-enhanced MRI with microglial activation ${ }^{\text {T }}$
Aleksi Haapanen ${ }^{\text {a }}$, Usama Abo Ramadan ${ }^{\text {b }}$, Taina Autti ${ }^{\text {c }}$, Raimo Joensuu ${ }^{\text {d }}$, Jaana Tyyneläa ${ }^{\text {a, }}{ }^{\text {* }}$

Neuropathologically, CTSD (Cathepsin D) deficient mice (CTSD_/_) are characterized by selective neuronal degeneration, gliosis and accumulation of autofluorescent proteinaceous storage material in neurons

MEMRI and histological stainings revealed that the hyperintense signal areas in MEMRI matched perfectly with areas of microglial activation in the brains of CTSD_/_ mice at the terminal disease stage

Fig. 2. Correlation between manganese-enhanced high-resolution $T_{1^{-}}$ weighted 3D images of CTSD $-/-$ and CTSD $+/+$ mice $(n=4)$ and glial activation at P25. Note the hyperintense areas in the thalamus (black arrow), inferior colliculus (white arrow) and olivary region (black asterisk) of the sagittal sections of CTSD $-/-$ mice. Immunohistochemical staining of the corresponding brain slices using F4/80 antibody shows microglial activation in the same areas, while staining using GFAP antibody shows generalized astrocytosis in the brains of CTSD $-/-$ mice. Higher magnification of the coronal MR image shows the thalamus in more detail, and the micrograph of the corresponding brain area, taken under ultraviolet light, shows the accumulation of autofluorescent storage material in the thalamus of CTSD $-/-$ mice.

Accumulation of autofluorescent storage material

Immunohistochemical staining F4/80 for microglial activation

GFAP antibody for astrocytosis staining

リnjuersiteit Antucrper

Conclusion MEMRI in brain research

- the majority of reported MEMRI applications focuses on activity, connectivity and mapping of somatosensory neuronal circuits
- MEMRI harbours great potential for the study of neuronal development, activity and plasticity in different small animal models
- Only animal work: Manganese based contrast agents in the clinic (manganese dipyridoxal diphosphate (MnDPDP)) for liver imaging: Mn is chelated > loose all the advantages of the ion Mn2+ capacities for MRI.
- in vivo non invasive tool to link behaviour, performed in a non restricted environment and while awake, with its neuronal substrate
- behavioural phenotyping in neurodegenerative mice models > inserting MEMRI into protocols for phenotyping the neural substrate of the observed modified behaviour

Literature

- book chapter :

Molecular and Cellular MR Imaging, Edited by Michel M.J.
Modo and Jeff W.M. Bulte, CRC Press. Chapter 20:
Functional Cellular Imaging with Manganese by
Vincent Van Meir and Annemie Van der Linden: p 369-392

- Book Chapter:

Advances in Neurobiology
Volume Title: Neural Metabolism In Vivo
Editors: In-Young Choi, Ph.D. and Rolf Gruetter, Ph.D.
Contrast agents, relaxation, in vivo calcium imaging by A. Van der Linden, V. Van Meir, D. Longo and S. Aime.

- Annemie.vanderlinden@ua.ac.be

[^0]: ${ }^{2}$ Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
 ${ }^{\mathrm{b}}$ Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 , USA
 ${ }^{\circ}$ Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
 ${ }^{\text {d Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA }}$
 ${ }^{\text {b }}$ Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
 ${ }^{\mathrm{f}}$ Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

