EMMI Intensive Programme "Design, Synthesis and Validation of

Imaging Probes, - 2011

2011 September 26, Monday

Gd(III) complexes: the importance of kinetic

and thermodynamic stability

Imre Tóth, University of Debrecen, Hungary

Content

Introduction

Equilibrium

Stability constants Conditional stability constants Simultaneous/competitive equilibria Data bases, modelling Measuring of stability constants of LnMC Case studies

Kinetics

Rate of chemical reactions Formation of metal complexes Formation of Ln-complexes Dissociation of Ln-complexes Case studies

Introduction

Elfelong Learning Programme	5 Intensive Programme "Desi	gn, Synthesis and Validation of Imagin	g Probes" schedule - 2011	Ø
Monday September 19	Tuesday September 20	Wednesday September 21	Thursday September 22	Friday September 23
1 9000 - 9030 registration 9045 - 10030 Wellcome and IP Introduction Silvio Alme	9h00 - 10h30 NMR and MRI Introduction Water Dastro	9h00 - 10h20 Hyper-polarized contrast agent A. Visie/F. Refner	9h00 - 10h90 Iron oxide particles Robert Muller	9h00 - 10h90 Strategles for cellular labeling Simonetta Geninatti
11h00 - 12h30 Imaging Probe: an overview <i>Silvio Alm</i> e	11b00 - 12h99 Gd(III) complexes: mechanism of action and relaxometric properties Mauro Botta	11h00 - 12h00 Hyper-polarized experiment F Reinen / W. Dastru / A. Viale	11h00 - 12h30 CEST agents: basic principles, mechanism of action and classification Enzo Terreno	11h00-12h30 Nano-particles for Multi-Modality Imagi Kisas Nicolay
14h00 - 15h30 Optical imaging probes Glannis Zacharakis	14h00 - 15h30 Mn-based Contrast Agents Annente Van der Linden	14h00-15h90 Gd(11) complexes: Basic relaxometric characterization Elana Gianolio	14h00 - 15h30 Responsive MRI Contrast Agents Gluseppe Diglio	14h00 - 15h30 NanoProbe practical session I D. Dell Castelli
16h00 -17 h20 PET and SPECT radiochemistry : Selected examples of Labelling of Macromolecules Frederic Dore	16h00 -17h30 T1 / T2 measure experiment W. Dastriv	16h00 -17h30 Relaxometric characterization of Gd(III) complexes and NMRD/17O analysis E. Glanollo / S. Baroni / F. Arena / D. Longo	16h00-17h90 NanoProbes Enzo Terreno	16h00 - 17h30 NanoProbe practical session II D. Dell Castelli
Monday Semember 26	Tuesday Serve mbet 27	Wednesday September 20	Thursday September 29	Friday Semember 20
9h00 - 10h30 Physico-chemical properties of Ln(II) complexes Carcologeration 11h00 - 12h30 Gd(III complexes: the Importance of kinetic and thermodynamic stability imme Toth	9h00 - 10h30 Basic principles and procedures of solid phase peptide synthesis <i>Lorenzo Tel</i> 11h00 - 12h30 Developing an imaging probe <i>Lorenzo Tel / Alessandro Barge</i>	9h00 - 10h30 Computational design of Imaging Probes Dario Longo 11h00 - 12h30 Ligand synthesis part II Luciano Latituada	9h00 - 10h30 Preparation of imaging Probes under power utrasounds/microvawes irradation Glancario Cravotito 11h00 - 12h30 Peptide modification and conjugation to probes Lorenzo Tel	9h00 - 10h30 analytical HPLC Lorenzo Tel/ Alessandro Barge 11h00 - 12h30 HPLC separation: from analytical to preparative method I Lorenzo Tel/ Alessandro Barge
14h00 - 15h30 Design of Imaging Probes Alessandro Barge 16h00-17h30 Ligand synthesis part I Govenbattista Giovenzana	14h00 - 15h20 MRI assessment of the cell labeling experiment Simonetia Geninati / Waiter Dastru 16h00 - 17h20 MRI assessment of the cell labeling experiment Simonetia Geninati / Waiter Dastru	14h00 - 15h90 Basic principles of chromatographic separation techniques Alessandro Barge 16h00 - 17h90 Peptide Symbols Lorenzo Tel / Alessandro Barge	14h00 - 15h30 Synthesis of metal-based imaging probe Lorenzo Tel/ Alessandro Barge 16h00 - 17h30 Peptide Cleavage Lorenzo Tel/ Alessandro Barge	14h00-15h00 HPLC separation: from analytical to preparative method II Lorenzo Tel/ Alessandro Barge 15h00 - 17h30 Final consideration and remarks / Final system assessment

practical session

ACCORDO NUMERO: 2011-1-172-ERA 10-27079

Step-vice formation of complexes:
$$M(H_2O)_n + L \longrightarrow ML(H_2O)_{n-1} + H_2O$$
 $K_1 = \frac{[ML(H_2O)_{n-1}]}{[M(H_2O)_n][L]}$ $ML_{n-1}(H_2O) + L \longrightarrow ML_n + H_2O$ $K_n = \frac{[ML_n]}{[ML_{n-1}(H_2O)][L]}$ Stepvice constants $K_n = \frac{[ML_n]}{[ML_{n-1}(H_2O)][L]}$ Overall reaction
 $M(H_2O)_n + nL \longrightarrow ML_n + nH_2O$ $\beta_n = \frac{[ML_n]}{[M(H_2O)_n][L]^n}$ $\beta_n = K_1 \cdot K_2 \cdot ... \cdot K_n$ $\beta_n = \frac{[ML_n]}{[M(H_2O)_n][L]^n}$ Overall stability constants $\beta_n = \frac{[ML_n]}{[M(H_2O)_n][L]^n}$

Coordination chemistry: basic principles

Groups of complexes

a/ parent complexes : only one ligand MA, MA₂, MA₃
MA_N (N: coordination number)
b/ mixed-ligand complexes: two or several ligands
M + A + B MAB or
MA₂ + MB₂ 2 MAB
c/ protonated complexes: protonation of the non-coordinated donors of the ligand

 $M + H_nA = M(AH) + n-1 H^+$

Groups of complexes

d/ *deprotonated complexes*: de-protonation and coordination of the ligand $M + A \Longrightarrow M(AH_{-1}) + H^+$

- for example alcoholate, amid-group)
- deprotonation of coordinated water

 $MA(H_2O)_n \xrightarrow{} MA(H_2O)_{n-1}(OH) + H^+$

e/ polynuclear complexes: nM + mA_ M_nA_m

A is a bridging ligand with one or two donor group(s)

Coordination chemistry: basic principles

Infuence of the charge of the metal ions on stability:

- +3 ions have higher stability compared to +2

- +2 cations in the 3d transition metal block follow the Irving-Williams series:

Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II) (i.e. it does not follow the change in size)

Hard –soft theory of Lewis acids and bases

hard acids (metal ions)	hard bases (ligands)
H+, Na+, K+	O-donor ligands:
Mg ²⁺ , Ca ²⁺ , Mn ²⁺ , VO ²⁺	H ₂ O, CO ₃ ²⁻ , NO ₃ ⁻ , PO ₄ ³⁻ ,
Al ³⁺ , Co ³⁺ , Cr ³⁺ , Ga ³⁺ , Fe ³⁺ ,	$ROPO_{3}^{2-}$, $(RO)_{2}PO_{3}^{-}$,
Ln ³⁺ , Th ⁴⁺ etc.	CH_3COO^- , OH^- , RO^- , R_2O ,
	crown ethers
	N-donor ligands:
	NH_3 , N_2H_4 , RNH_2 ,
	F ⁻ , Cl ⁻

Coordination chemistry of transition metals

Borderline acids (metal ions)	Borderline bases (ligands)
Fe ²⁺ , Ni ²⁺ , Zn ²⁺ , Co ²⁺ , Cu ²⁺ , Pb ²⁺ , Sn ²⁺ , Ru ²⁺ , Au ³⁺ Tl ⁺	Br-, SO ₃ ²⁻ , <i>N</i> -donor ligands: NO_2^- , N_3^- , N_2 , NH_2
soft acids (metal ions)	soft bases (ligands)
Cu ⁺ , Au ⁺ , Tl ³⁺ , Ag ⁺ , Hg ₂ ²⁺ Pt ²⁺ , (Pb ²⁺⁾ , Hg ²⁺ , (Cd ²⁺⁾ , Pd ²⁺ , (Pt ⁴⁺)	S-donor ligands: S ^{2–} , RSH, RS [–] , R ₂ S, S ₂ O ₃ ^{2–} R ₃ P, (RS) ₂ PO ₂ [–] , (RO) ₂ P(O)S [–] , RNC, CN [–] , CO, R [–] , H [–] , I [–]

Coordination chemistry: basic principles

Influence of the ligand on the stability of complexes

- hard-soft character of donor atoms
- charge
- denticity
- overall basicity
- chelate effect (entropy contribution)
 - chelate ring size (5 is preferred)
- macrocycle effect/ encapsulating ligands
 - cavity size
 - -rigidity of the MC

Mathing the size of the metal ion and the cavity

Properties of some Y³⁺**complexes formed with DTPA type ligands**

Ligand	$\Sigma \log K_{i}^{H} (\log K_{1}^{H})$	$\log K_{\rm YL}$	$k_{\rm D}^{*}$ (s ⁻¹)
CHX-A	32.92 (12.3)	24.7	0.462
CHX-B	31.47 (12.3)	24.4	0.047
1B4M	30.39 (11.31)	22.5	6.62
1B3M	30.60 (11.46)	22.5	13.5
2B	29.24 (10.75)	21.7	41.8
1B	29.18 (11.16)	21.5	37.4
CHX-DTPA	32.27 (12.3)	24.2	0.75
DTPA	28.00 (10.48)	22.4	144

* The rates of acid catalyzed dissociation were measured with the use f ArIII ([YL]= 10^{-5} mol/dm³ and [AAIII]= 10^{-5} mol/dm³).

T. J. McMurry, C. G. Pippin, C. Wu, K. A. Deal, M. W. Brechbiel, S. Mirzadeh, O. A. Gansow, *J. Med. Chem.* **1998**, *41*, 3546

Some general requirements to the complexes to be used in medicine

- ✓ Good water solubility (easy to administer)
- ✓ Low osmolality and preferably no (or negative) charge
- ✓ Non-toxicity
- ✓ High thermodynamic stability and kinetic inertness
- ✓ Possible quick complex formation
- ✓Organ specificity (when injected the media concentrates in area(s) required or bifunctional ligands)
- ✓ The production of the ligand and the complex should be cost effective.

0 0、 0. 0、 0. OH_2 OH_2 OH_2 0 0 0 ОН 0 0 OH_2 0. \cap 0 Gd Gd Gd Gd Gd HO HO NHMe O HΟ \cap ÒН ŃНМе \cap 0 \cap GdDTPA²⁻ GdDO3A-Butrol GdDTPA-BMA GdDOTA⁻ GdHP-DO3A Magnavist Omniscan Dotarem ProHance Gadovist _OMe ⊖_{0`} 0 ΗN OH_2 \cap OMe H₂O 0. \cap 0 H₂O Ň H_2O_4 Gd Gd G_{i} O N ó Ó Ó ö ö 0 GdDTPA-EOB²⁻ GdBOPTA²⁻ GdDTPA-BMEA MS-325 Vasovist Optimark Eovist Multihance

Clinically approved, commercially available Gd-based contrast agents (q=1)

Name Ac Ge Na Tr Na	Acronym Gd Generic Ga Name din	Gd-DTPA Gadopentetate dimenlumine	Gd-DTPA-BMA Gadodiamide	Gd-DTPA-BMEA Gadoversetamide	Gd-BOPTA Gadobenate	Gd-EOB-DTPA Gadoxetic acid	MS325 Gadofosveset	Gd-DOTA Gadoterate meglumine Dotarem [®]	Gd-HP-DO3A Gadoteridol	Gd-BT-DO3A Gadobutrol
	Trade Name	Magnevist [®]	Omniscan [®]	OptiMARK [®]	MultiHance®	Primovist [®]	Vasovist [®]		ProHance®	Gadovist [®]
Company		Bayer-Schering	GE-Healthcare	Covidien	Bracco	Bayer-Schering	Bayer-Schering	Guerbet	Bracco	Bayer- Schering
Chemical structure		Open-chain	Open-chain	Open-chain	Open-chain	Open-chain	Open-chain	Macrocyclic	Macrocyclic	Macrocyclic
Charge		Di-ionic	Nonionic	Nonionic	Di-ionic	Di-ionic	Tri-ionic	Ionic	Nonionic	Nonionic
Dissociated particles per molecule		3	1	1	3	3	4	2	1	1
Log P BuOH/H2O		-3.16	-2.13	ND	-2.33	-2.11	-2.11	-2.87	-1.98	-2
Concentration (M)		0.5	0.5	0.5	0.5	0.25	0.25	0.5	0.5	1.0
Standard dose (mmol/kg)		0.1	0.1	0.1	0.1 ^a	0.025	0.03	0.1	0.1	0.1
Osmolality at 37°C (mOsm/kg H ₂	O)	1960	789	1110	1970	688	825	1350	630	1603
Osmotic load ^b (mOsmol/l)		2	0.67	0.67	2	0.5	0.8	1.33	0.67	0.67
Relaxivity $(r_1/r_2) \text{ mM}^{-1}\text{s}^{-1}$ at 37° 1.5 T in water ^e	C.	3.3/3.9	3.3/3.9	3.6/4.1	3.8/4.4	4.6/5.3	5.0/5.9	3.0/3.5	2.9/3.4	3.3/3.9
Viscosity (mPa.s) at 37°C		2.9	1.4	2.0	5.3	1.19	2.1 ^c	2.0	1.3	4.96
Formulation		Free DTPA 0.2% (1 mmol/l)	Ca-DTPA-BMA (Na ⁺ salt) 5% (25 mmol/l)	Ca-DTPA-BMEA (Na ⁺ salt) (50 mmol/l)	No formulation	Ca-EOB-DTPA (trisodium salt) ^d	Fosvest ligand (0.325 mmol/l) ^e	No formulation	[Ca-HP-DO3A] ₂ (Ca ²⁺ salt) 0.1% (0.5 mmol/l)	Ca-BT-DO3A (Na ⁺ salt) (1 mmol/l)
Log Kthems		22.1	16.9	16.6	22.6	23,46	22.1 ^r	25.6 ^g	23.8	21.8
Log K _{cond}		17.7	14.9	15.0	18.4 ^h	18.7 ⁱ	18.9 ^f	19.3 ^g	17.1	14.7 ^j

Table 1 General characteristics of currently marketed gadolinium chelates used for magnetic resonance imaging (Idée et al. 2006; Caravan et al. 1999; Brücher and Sherry 2001)

^aDose for liver imaging: 0.05 mmol/kg

^bosmotic load (mOsm/l) = $\frac{dose(mmol/kg)*70}{V_{darbative}(l)}$ e number dissociated ions (values are calculated on the assumption that the agents distribute homogeneously in the interstitial space (10.5 l for a patient weighing 70 kg) ^cGuerbet measurement on commercial solution; Incertainty on relaxometric measurement: ±0.3 mM⁻¹ s⁻¹ for relaxicity measurements

d(concentration not disclosed)

eSteger-Hartmann et al. (2006)

^fCaravan et al. (2001)

^gMoreau et al. (2004) and Guerbet calculations

^hUggeri et al. (1995)

ⁱSchmitt-Willich et al. (1999)

^jBellin et al. (2003)

Coupled equilibria (simultaneous equilibria)

Redox reaction:

Conditional stability constants

There is a definite need to consider the "side reactions" of the metal ion and the ligand

The most important parameter (in clean systems) is pH:

H⁺ could protonate the (week base) ligand

OH- could form hydroxo-complexes/hydroxide precipitate with the metal ion

Endogenous metal ions and ligands in "real systems": almost unlimited number of competitors

One can not calculate conditional constants by hand

Model calculations need suitable data (log β_{ML} , log β_{HL} ,

pL (solubility product), pH, pE, temperature

(Could be good for planing experiments also!)

(<u>Stability Constants Databases -</u> <u>NIST and IUPAC</u>)

Main Win	dow : SCQue	ery for Inorgan	nic Chem., Univ. D	ebrecen, l	Hungary			_ 🗆 🗵
File Ligand L	ist Metal List	Reference List	Experimental Det	ails Experi	iment List	Browse Database	Windows	Help
1			BAQ	L.	17	K 🖹	N ?	? /1
Specify Ligar	ids Specify M	letals Specify R	eferences Specify	Experiment	al Details	Browse Experime	ent List	
Enter an emp the boxes on list, or draw a Click on Sear Clear Ligand	irical formula, li the right, or ch ligand structur ch to see all m Specification Sea 2 ligands for le	gand name or a C oose a ligand clas e, or any combina atching ligands in Method of Mat © Exact © S urch ≫	AS number in Fi is from a class fi tion of these. the list below. Emp ching Nar tart C Any CAS Class 2* name : *histiding	hished with I specificatio pirical Formu ne (short/ful Number : ss/structure:	Ligands ? ins are cor lla: C6H91 l): *his	select another table. mplete, select the 'Ex N302* tidine* Specify Class/Struct	g. Specify N periment Li:	fetals st'tab)
			(do	uble-click, o	r click righ	it, on any ligand in th	e list for full	details)
71-00-1 13552-61-	C6H9N3 9 C6H9N3	02 025	Histidine Thiolhist	idine	2-Amino 1-Amino	-3-(4'-imidazo -2-(2-Mercapto	olyl)proj Dimidazo.	panoic a le)-prop:
Reject non-l	fighlighted Liga	inds Hig	hlight All	lighlight Nor	ne	Invert Highlights		

Main Window	v : SCQuery	for Inorgan	ic Chem., Univ.	Debrecen,	Hungary			_ 🗆 🗡
File Ligand List	Metal List R	eference List	Experimental De	etails Expe	riment List	Browse Database	Windows	Help
1				Q	c ,	M 🕑 🔳	▶?	? Ø d t
Specify Ligands	Specify Metal	Specify Re	ferences Speci	fy Experimen	tal Details	Browse Experime	nt List 🛛	
You can click on or, for individual n in the edit box be Search to see all While searching are matched on	one of the meta hetal ions, type I low the panel (e matching metal , metal names y from the start	al groups in the the name/s of s.g. Cu, Ni, Ai s in the list beli Clear Meta Sea	e side panel metal ions g). Click on ow. al Specification rch `>	nished with M f specificatio	Vetals ? sel ns are comp Groups o Hydr Any I Own	ect another table.g. plete, select the 'Exp ogen / Deuterium Metal Ion Metal Group	Specify Ligz eriment List Lanthar Alkali M	ands 'tab) nides etals Earths
List contains 2 me	etals for name :	Cu++			,	Compare Consta	nts ForTwo	Metals
Cu++ Cu+++		1		11		Click below your 'Own h can then be in the panel Record I	to record t Metal Group recalled by above. Dwn Metal (he list as o' which clicking Group
Reject non-High	hlighted Metals	Highligh	it AllHighlig	ght None	Invert High	hlights		

Main Window : SCQuery for Inorganic Chen	n., Univ. Debrecen, Hungary	
File Ligand List Metal List Reference List Experi	mental Details Experiment List	Browse Database Windows Help
	<u>a</u> qq <u>b</u>	🔀 🖻 📄 💦 ? 🌆
Specify Ligands Specify Metals Specify Reference	s Specify Experimental Details	Browse Experiment List
	R Full Display (single expt.)	Experiment Data to Printer
	R Condensed Display	Data to Clipboard for Printer
Match Specifications	🔚 Experiment Data to Disk	Data to Clipboard for Spreadsheet
Beload Experiment List From Disk	Current specifications are : 2 ligands : Histidine, Thiolhisti 2 metals : Cu++, Cu+++ (no references specified) (no experimental details speci	idine ified)
Protonate Experiment List	The list for these specification	s will contain 81 experiments
Cancel Experiment List		
Cancel List/All Specifications		

Condensed Display of Data for Experiments in List			
L Step Size ☞ Near⊂ Mid ⊂ Fa	ar 🕞 Screen to Clipboard	🛛 🕀 See Full Display	
Previous Experiment Next Experiment Nos. 1 to 30 of 81 ir	n list	Screen to Printer	
Ligand : C _n H₀N₂O₂ Histidine HL Ci	AS : 71-00-1	-	
2-Amino-3-(4'-imidazolyl)propanoic acid H2N.CH(CH2.C3	H ₃ N ₂)COOH		
Metal : Cu** Short Reference : 1999AAa (experiment i	no. 46590) 1		
Experimental Details: Method:gl Medium: KNO3 Calib Temperature:25°C Ionic Strength:0.10M Rec:	.:C : Flags:M		
Constants (ig values) : $K_1 = 10.50$	B(Cul A)=14 12		
K(CuL+β ₃ =3.80	β(CuLβ)=14.30		
Comment : K(CuL+C)=3.53, β(CuLC)=14.03, K(CuL+D)=3. HA=MOPSO, Hβ=MOPS, HC=DIPSO, HD=TAPSO	.66, β(CuLD)=14.16. Ο.		
Metal : Cu++ Short Reference : 1999Bla (experiment n Experimental Details : Method : of Medium : KNO., Calib	no. 46591) - 2 1 C		
Temperature : 25°C Ionic Strength : 0.10M Rec :	Flags :		
Constants (ig values) : K ₁ = 10.11			
Metal : Cu++_Short Reference : 1999NNa(experiment	no. 46592) 3		
Experimental Details : Method : gl Medium : NaClO ₄ Cal Temperature : 37°C Ionic Strength : 0.15M Rec :	lib. : U : Flags : M		
Constants (Ig values) :			
β(CuHAL)=22.07 K(CuA+L)=9.81	β(CuAL)=17.82 K(CuL+A)=7.55		
Comment : K(CuHL+A)=7.69. HA is nicotinic acid.			
Metal : Cu ⁺⁺ Short Reference : 1997NAb (experiment	no. 46593) 4		
Experimental Details: Method:gl Medium: NaClO ₄ Cal Temperature: 37°C Ionic Strength:0.15M Rec:	lib.:U : Flags:M		
Constants (Ig values) :			
β(CuAL)=18.46 β(CuHAL)=22.79	β(CuH2AL)=26.50 K(CuL+A)=8.19		

	tor experiment	s in List		<u>×</u>
	Þ	Step Size © Near© Mid © Far	Expt to Clipboa	ard KvT Temp. Dependence
Previous Expt	Next Expt	Experiment no. 46590 No. 1 of 81 in list	👿 Speciation	Kvī Ionic Strength Dep.
Metal Ion, Reference and Cu ⁺⁺ Short Refer Z Anwar,H Azab; J.Ch C ₆ H ₉ N ₃ O ₂ Histidine 2-Amino-3-(4 ¹ -imidazi	fLigand ence:1999AAa em.Eng.Data,44,1 HL blyl)propanoic a	(refer to original paper for full da 151 (1999) CAS : 71-00-1 cid	ta)	Temperature Dependence of K1 Not all required data available. Click on Temp. Dependence to enter values manually for any constant.
H_2 N.CH(CH ₂ :C ₃ H ₃ N Ligand Classes : biol Data K1=[ML]/[M][L] Method : Glass Electric Temperature : 25°C I Constants (Ig values) K ₁ = 10.50 ΔG (K ₁ =10.50) = -59	ogical amino ad K2=[ML2]/[ML] ode Medium : lonic Strength : (.93	<u>ids / azoles (5 mem.rings</u> <u>L] Beta2=[ML2]/[M][L]^2</u> KNO ₃).10M Calibration : Conce β(CuLA)=14.13	entration	Ionic Strength Dependence of K1

Full Display of Da	ta for Experiment	s in List		>
•	Þ	Step Size • Near O Mid O Far	Expt to Clipboard	KvŢ Temp. Dependence
Previous Expt	Next Expt	Experiment no. 46592 No. 3 of 81 in list	Speciation	KvI Ionic Strength Dep.
Metal Ion, Reference a Cu ⁺⁺ Short Re M Nair, M Neelakantan C ₈ H ₉ N ₃ O ₂ Histid 2-Amino-3-(4'-imid H ₂ N.CH(CH ₂ .C ₃ H Ligand Classes : b Data K1=[ML]/[M][I Method : Glass Ele Temperature : 37*(Constants (Ig value	and Ligand (continued ference : 1999NNa ,S Sunu; Indian J. C. ine HL azolyl)propanoic ar ₃ N ₂)COOH iological amino ac _] K2=[ML2]/[ML][ctrode Medium : C Ionic Strength : 0 as) :	i) (refer to original paper for full data <i>bem.</i> , 384, 1307 (1999) CAS : 71-00-1 ;id ids / azoles (5 mem.rings) _] Beta2=[ML2]/[M][L]^2 NaClO ₄ or LiClO ₄ .15M Calibration : Unknow	Nr N	mperature Dependence of K1 ot all required data vailable. ck on Temp. Dependence enter values manually for y constant. ic Strength Dependence of K3 ot all required data vailable. ck on Ionic Strength Dep. enter values manually for y constant.
NOUHAL)=22.0	7	β(CuAL)=17.82		

Full Display of Data for Expe	riments in List		
	Step Size	Expt to Clipboard	KvŢ Temp. Dependence
Previous Expt Next Exp	Experiment no. 46594 No. 5 of 81 in list	Speciation	KvI Ionic Strength Dep.
Metal Ion, Reference and Ligand (c Cu++ Short Reference : 19: M Shoukry,E Khairy,R Khalil; <i>Tran</i> C ₈ H ₉ N ₃ O ₂ Histidine 2-Amino-3-(4 ⁺ imidazolyl)prop: H ₂ N.CH(CH ₂ .C ₃ H ₃ N ₂)COOH	continued) 97SKc (refer to original paper for full dat: <i>isition Met.Chem.,22,465</i> (1997) HL CAS : 71-00-1 anoic acid	a) N Enlarge A C tr a	emperature Dependence of K1 lot all required data vailable. lick on Temp. Dependence o enter values manually for ny constant.
Ligand Classes : biological and Data K1=[ML]/[M][L] K2=[ML] Method : Glass Electrode Method : Glass Electrode Method : Glass Electrode Temperature : 25°C Ionic Strest Constants (Ig values) : K1 = 10.66 K2 $\Delta G (K_1 = 10.66) = -60.85$ $\Delta G \\ \beta (CuAL) = 16.08$ $\beta (CuHL) = 14.86$	$\frac{\text{mino} \arctan \beta (\beta x) \arctan \beta (\beta x)}{2[/[ML][L]] - Beta2=[ML2]/[M][L]^2}$ dium : NaNO ₃ ength : 0.10M Calibration : Activity $= 8.30 \qquad \beta_2 = 18$ is $(K_2 = 8.30) = -47.38 \Delta G \ (\beta_2 = 18)$ is $\beta(CuH-1AL)=7.22$) o 3.96 3.96) = -108.22	nic Strength Dependence of K1
HA is glycyl-DL-leucine. Data for TERNARY Complexes			

Full Display of Data for Experimen	ts in List		
•	Step Size	Expt to Clipboard	KvT Temp. Dependence
Previous Expt Next Expt	Experiment no. 46643 No. 54 of 81 in list	👿 Speciation	KvI Ionic Strength Dep.
Metal Ion; Reference and Ligand (continue Cu ⁺⁺ Short Reference : 1978SKa I Sovago,T Kiss,A Gergely; J. Chem.Soc C ₆ H ₉ N ₃ O ₂ Histidine HL 2-Amino-3-(4 ⁺ imidazolyl)propanoic a H ₂ N.CH(CH ₂ ,C ₃ H ₃ N ₂)COOH Ligand Classes : biological amino a	ed) (refer to original paper for full data <i>"Daiton Trans.</i> ,964 (1978) CAS : 71-00-1 acid cids / azoles (5 mem.rings)	a) N Te N Enlarge ar	mperature Dependence of K1 ot all required data vailable. ick on Temp. Dependence enter values manually for ny constant.
$\label{eq:linear_product} \begin{array}{llllllllllllllllllllllllllllllllllll$	[L] Beta2=[ML2]/[M][L] ² KCI 0.20M Calibration : Unknow we Recommendation $\beta_2 = 17$ 7.78) = -44.41 $\Delta G (\beta_2 = 17$ $\beta(CuHL2)=23.62$ $\beta(CuH-2L2)=8.0$	wn (.82 (.82) = -101.72	ic Strength Dependence of K1
β(CuL(Gly))=17.43, β(CuL(en))=19.4 Data for TERNARY Complexes	6, β(CuL(bpy))=16.84, β(Cu	uL(Tiron))=22.60	

Medusa developed by Ignasi Puigdomenech at the Royal Institute of Technology (KTH), Stockholm, Sweden. (I.Puigdomenech (2000) "Windows software for the graphical presentation of chemical speciation", in: 219th ACS National Meeting. Abstracts of Papers, Vol.1. Amer. Chem. Soc., San Francisco, Ca, March 26-30, 2000. Abstract I&EC-248. http://www.kemi.kth.se/medusa). This program is free, it can be down loaded from the web-site of the KTH or I. Puigdomenech

CuHis.dat - Jegyzettömb		
Fájl Szerkesztés Formátum Nézet Súgó		
Fájl Szerkesztés Formátum Nézet Súgó 3, 15, 1, 0 U 2+ H + OH - H + H + <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

The matrix and the constants are defined by selected components and the equilibrium reaction being considered!

? Select Diagram Type -	
Input Data File Name: C:\Users\	Tamika\Desktop\Munka\MEDUSA\CuHis.(
Diagram <u>n</u>	ame: CuHis
Diagram:	Parameters: lonic strength = 0.0
Y-axis: Fractions for: Cu 2+ ▼ 0 % 2.0 10.0 X-axis: pH varied	allow <u>reversed</u> conc. ranges
H + 💌	<u>Save as defaults</u>
Concentrations: Total conc. (Cu 2+) = 0.05 Total conc. (His 2-) = 0.1 pH varied from 2.0 to 10.0	

Distribution curves for the major species (e.g. >10 %)

Log c – pH showing "all species". Numerical values are also calculated.

Measuring of stability constants

Step-vice formation of complexes:

M + L ==== ML

Mass balance equaitions + measuring at least one equilibrium concentration

```
T_{M} = [M] + [ML]
```

 $\mathsf{T}_{\mathsf{L}} = [\mathsf{L}] + [\mathsf{M}\mathsf{L}]$

Several standard methods are known in case of fast equilibration and moderate stability: [M] / [ML] \sim 1 (0.1 – 10) adjusted by the experimental conditions (pH, concentrations of components etc)

- pH-potentiometric titration (2 <pH >12)
- UV-VIS spectrophotometry
- multinuclear NMR spectroscopy
- 1H-NMR relaxometry
- microcalorimetry

Serious limitations in case of slow equilibration and very large stability

Determination of (high) stability constants : proton + metal ion or ligand competition

$$\begin{array}{rcl} \mathbf{M}^{\mathbf{n}^{+}} + \mathbf{H}_{\mathbf{y}}\mathbf{A} + \mathbf{H}_{\mathbf{x}}\mathbf{L} \rightleftharpoons \mathbf{M}\mathbf{L} + \mathbf{M}\mathbf{A} + \mathbf{x}\mathbf{+}\mathbf{y}\mathbf{H}^{+} \\ \mathbf{M}^{\mathbf{n}^{+}} + \mathbf{Y}^{\mathbf{z}^{+}} + \mathbf{H}_{\mathbf{x}}\mathbf{L} \rightleftharpoons \mathbf{M}\mathbf{L} + \mathbf{Y}\mathbf{L} + \mathbf{x}\mathbf{H}^{+} \end{array}$$

Direct titration when the ligand or the metal exchange reaction is fast

"Out-of-cell" technique when the ligand or the metal exchange reaction is slow

pH-potentiometric titration

Large number of protonation and stability constants must be known ion order to be able to calculate the one that is under question.

 $\log K_{\mathrm{H_{j}A}}^{\mathrm{H}}, \log K_{\mathrm{H_{j}L}}^{\mathrm{H}}, \log K_{\mathrm{MA}}, \log K_{\mathrm{MH_{i}A}}^{\mathrm{H}}, \log K_{\mathrm{MA(OH)_{j}}}^{\mathrm{H}} \qquad \qquad \log K_{\mathrm{H_{j}L}}^{\mathrm{H}}, \log K_{\mathrm{YL}}, \log K_{\mathrm{YL}}^{\mathrm{H}}, \log K_{\mathrm{YL}}^{\mathrm{H}}, \log K_{\mathrm{YL(OH)_{j}}}^{\mathrm{H}}$

UV-VIS spectrophotometry

Fast formation and dissociation: direct titration
 Slow formation and dissociation: "out of cell" method
 Competition reactions or formation
 Generation of cell" method
 Generation of cell (metal or ligand exchange)
 Generation of cell (metal or ligand exchange)

$$A=1 \ \varepsilon_{ML} \ \cdot c_{ML}+1 \ \varepsilon_{MA} \ \cdot c_{MA} \longrightarrow \text{ ligand exchange}$$
$$A=1 \ \varepsilon_{ML} \ \cdot c_{ML}+1 \ \varepsilon_{YL} \ \cdot c_{YL} \longrightarrow \text{ metal exchange}$$

Even larger number of constants must be obtained very precisely.

Speciation of Zn²⁺- PCTA3Am - H⁺ system

pН

Zn - BIMP - PCTA3Am competition reaction followed by pH-potentiometry $[Zn^{2+}] = [PCTA3Am] = 2 mM$ [BIMP] = 4 mM ([HC1]=0.2188 M).

Competiton of PCT3Am and BIMP ligands for Cu²⁺ ions

Cu – BIMP – PCTA3Am competition reaction **1.** [Cu(PCTA3Am)] (4 mM); **2-8.** [Cu(PCTA3Am)(BIMP)] (**2.** 0,5mM; **3.** 1,0mM; **4.** 1,5mM; **5.** 2,0mM; **6.** 2,5mM; **7.** 3,0mM; **8.** 3,5 mM BIMP) **9.** [Cu(BIMP)] (4 mM)

Optimal Ln-complexes from thermodynamic point of view

- High (as high as possible) thermodynamic stability

Tuning stability (as high as possible) playing with -quality and number of donor atoms -structure of ligand (open chain or MC) - basicity -rigidity etc

One can not forget other requirements as effectiveness, inertness, price etc.

Kinetics: basic principles (Ions in Solution by J. Burgess, Ellis Horwood Ltd. Chicester, 1988).

$$A + B \stackrel{k_{\pm}}{\underset{k_{b}}{\leftarrow}} C + D \qquad K = \frac{k_{\pm}}{k_{b}}$$

al and the second	comple	exes of transitio	n metals		•
Complex	log ₁₀ β _n	Mean	$k(*CN^{-} exchange) (s^{-1})$		
3.		$\Delta H(M-CN)^{-1}$ (kJ mol ⁻¹)	fast		slow
[Mn(CN)]4-		- 24	>10 ⁻²	41 (F	1.1
[V(CN) ₆] ⁴ -		- 33	>10 ⁻²		
[Co(CN)_3]3-	19	43	>10 ⁻²		
[Cr(CN)6]4-		- 44	$> 10^{-2}$	e in the second	
[Mn(CN)6]3-				2×10^{-4}	
[Ni(CN)4]2-	31	- 45	$> 10^{-2}$	13	
[Cr(CN)6]3-					3×10-
[Fe(CN)6]4-	34	- 60			< 10 ⁻⁶
[Pt(CN)4]2-	35			1.2×10^{-2}	
[Pd(CN)4]2-	42	- 96	>10 ⁻²		*
[Fe(CN)6]3-	44	- 49			1<10-6
[Co(CN)6]3-	64				<10-6

112

Stable vs. unstable (thermodynamics) Inert vs. labile (kinetics)

Gd(III) complexes: the importance of kinetic and thermodynamic stability

Should be as: Gd(III) complexes: the importance of kinetic inertness and thermodynamic stability

denote estimates derived from rate constants for complex formation.

ICh. S

Solvent exchange

Sec. 9.2]

Mechanisms

Table 9.3 — Activation entropies as a guide to solvent exchange mechanisms

Cation Solvent ^a ΔS^*		$\Delta S^* (J K^{-1} mol^{-1})$	Mechanism
Be ²⁺	TMU DMSO TMP	+16 -32 -54	dissociative associative
Al ³⁺	water DMSO TMP DMF	$ \begin{array}{c} +42 \\ +22 \\ +37 \\ +43 \end{array} $	dissociative
Ga ³⁺	water DMSO DMF	$\left.\begin{array}{c} +30\\ +4\\ +46\end{array}\right)$	dissociative
In ³⁺	water TMP	$\begin{pmatrix} -96 \\ -113 \end{pmatrix}$	associative
Sc ³⁺	TMP DMA TMU	$\begin{pmatrix} -126 \\ -132 \\ +48 \end{pmatrix}$	associative dissociative
Tm ³⁺	DMF	+10	dissociative
Cr ³⁺	DMSO DMF	-49 -42	associative
Fe ³⁺	water MeOH DMSO	$\begin{pmatrix} -54 \\ -31 \\ -43 \end{pmatrix}$	associative
Pd ²⁺	water	-24	associative

"Solvent abbreviations as Table 9.3, plus: DMA dimethylacetamide; DMF dimethylformamide.

determined for exchange of a coordinating solvent in an appropriate diluent. The form

112

Mechanisms of solvent exchange (A. Merbach)

Kinetics and mechanisms: complex formation

10.1 BACKGROUND

The formation of a metal complex from a solvated metal ion and a ligand is, like solvent exchange, a special case of substitution (Fig. 10.1). It is a special case which is

```
\begin{split} & \text{SUBSTITUTION: GENERAL} \\ & \text{ML}_{3}L' + L^{*} \rightarrow \text{ML}_{5}L^{*} + L' \\ & \text{e.g. } [Fe(CN)_{5}(NH_{3})]^{3-} + py \rightarrow [Fe(CN)_{5}(py)]^{3-} + NH_{3} \\ & \text{SUBSTITUTION: SPECIFIC} \\ & \text{Solvent exchange} \\ & \text{MS}_{6}^{*+} + ^{*}S \rightarrow \text{MS}_{5}^{*}S^{*+} + S \\ & \text{e.g. } [Al(OH_{2})_{6}]^{3+} + ^{*}OH_{2} \rightarrow [Al(OH_{2})_{5}(^{*}OH_{2})]^{3+} + OH_{2} \\ & \text{Complex formation} \\ & \text{MS}_{6}^{*+} + L \rightarrow \text{MS}_{5}L^{*+} + S \\ & \text{e.g. } [Ni(OH_{2})_{6}]^{2+} + Br^{-} \rightarrow [Ni(OH_{2})_{5}Br]^{+} + OH_{2} \\ & \text{Aquation or solvolysis} \\ & \text{ML}_{3}L' + S \rightarrow \text{ML}_{5}S + L' \\ & \text{e.g. } [Co(NH_{3})_{5}CI]^{2+} + H_{2}O \rightarrow [Co(NH_{3})_{5}(OH_{2})]^{2+} + Cl^{-} \\ & \text{Ligand exchange} \\ & \text{ML}_{6}^{*+} + L \rightarrow \text{ML}_{5}^{*}L^{*+} + L \\ & \text{e.g. } [Fe(CN)_{6}]^{4-} + ^{*}CN^{-} \rightarrow [Fe(CN)_{5}(^{*}CN)]^{4-} + CN^{-} \\ \hline \end{split}
```

Fig. 10.1 - Types of substitution reactions at complexes.

Eigen-Wilkins mechanism

Eigen-Wilkins mechanism: Ni²⁺ complexes

[Ch. 10

Kinetics and mechanisms: complex formation

128

Measured Estimated Derived Ligand $10^{-3}k_{\rm f}({\rm M}^{-1}{\rm s}^{-1})$ K_{os} (molar scale) $10^{-3}k_i(s^{-1})$ N-Methylimidazole+ 0.23 0.02 12 Imidazole H+ 0.3 0.02 15 Ammonia 5 0.15 33 Hydrogen fluoride 3 0.15 20 Imidazole 2.8-6.4 0.15 19-43 1,10-Phenanthroline 4.1 0.15 26 Diglycine 21 0.17 12 Fluoride-8 1 8 Acetate⁻ 100 3 30 22 Glycinate-20 10 Oxalate H⁻ 5 3 Oxalate²⁻ 75 13 6 Malonate²⁻ 95 450 5 Methylphosphate2-290 7 40ª Pyrophosphate3-2100 88 24 Tripolyphosphate4-6800 570 12 1. 1 Cf. Water exchange 30

Table 10.1 — Rate constants and pre-association constants (defined in the text and in Fig. 10.3) for formation of complexes from $Ni^{2+}aq$, in aqueous solution at 298.2 K

"In this favourable case K_{os} was derived from the kinetic results.

SCS mechanism for bidentate ligands

SCS mechanism for bidentate ligands

Kinetics and mechanisms: complex formation [Ch

[Ch. 10

Table 10.7 — Kinetic data relating to the SCS (sterically controlled substitution) mechanism for formation of chelate complexes; all rate constants are in units of $M^{-1} s^{-1}$, at 298.2 K in aqueous solution

134

Cobalt(II)				
	water exchange: complex formation with monodentate ligands:	2×10^6 uncharged ~1 to 3×10^5 charge 1 - ~1 to 3×10^6		
5-membered				
rings:	glycinate ⁻ α -alaninate ⁻	α -aminobutyrate ⁻ H ₃ CCH ₂		
	H_2N O ⁻ H_2N O ⁻ 2 × 10 ⁶ 2 × 10 ⁶	H ₂ N O ⁻ 2.5 × 10 ⁵	1×10 ⁷	
6-membered rings:	β-alaninate [−]	β-aminobutyrate ⁻	iminodipropionate ²⁻	
	HaN 0	H ₃ C H ₂ N O ⁻		
	1×10 ⁵	2×10 ⁴	3×10 ⁵	
Copper(II)				
	water exchange: reaction with: ammonia pyridine imidazol	$ \begin{array}{c} 4 \times 10^{9} \\ 2 \text{ to } 20 \times 10^{8} \\ \end{array} $	* 	
5-membered-r 6-membered-r 7-membered-r	ing: α-alaninate 10×10^8 ing: β-alaninate 2×10^8 ing: L-carnosine ^a 5×10^4			
*L-carnosine =	HN COZ			

Polydentate and macrocycle ligands

Effect of rigidity on rate constants (of the rate determining step)

The fast first stage, involving initial bonding of the crown ether to the Na⁺, has k_f between 4 and 6×10^8 M⁻¹ s⁻¹ for these three ligands.

Table 10.16 — Rate constants, k_f (M⁻¹ s⁻¹), for formation of cryptates of alkali metal cations; in methanol at 298.2 K

1	[211]	[221]	[222]
Li+	4.8×10^{5}	1.8×107	
Na ⁺	3.1×10^{6}	1.7×10^{8}	2.7×10^{8}
К+		3.8×10 ⁸	4.7×10^{8}
Rb+		4.1×10^{8}	7.6×10^{8}
Cs+		$\sim 5 \times 10^{8}$	~9×10 ⁸

Kinetic studies on Ln(III)-ligand systems

Two cases were observed:

a. Formation of Ln(III) complexes of simple DOTA-tetraamides (e.g. DOTAM, DTMA, ...) which is a simple second order reaction between the Ln^{3+} and the deprotonated ligand.

Formation of $[Ce(DTMA)]^{3+}$ as a function of time ($C_{Ce} = C_L = 5 \times 10^{-4}$ M in NMP buffer ($C_{NMP} = 2.5 \times 10^{-2}$ M) with pH = 5.26).

Formation kinetics of the complexes

Formation kinetics of the complexes

b. Formation of Ln(III) complexes of macrocyclic ligands bearing negatively charged side arms (e.g. DOTA, DOTP, DOTA-4Gly, DOTA-4AMP ...) proceeds via the formation of stable intermediates (protonated complexes).

 $Ce^{3+} + H_xDOTA \Longrightarrow [Ce(H_2DOTA)^+] + (x-2)H^+ \rightarrow [Ce(HDOTA)] \rightarrow [Ce(DOTA)]^- -H^+$

Formation of [Ce(DOTA)]⁻ as a function of time ($C_{Ce} = C_L = 5 \times 10^{-4}$ M in NMP buffer ($C_{NMP} = 5.0 \times 10^{-2}$ M) with pH = 4.39).

Brücher, E.; Laurenczy, G.; Makra, Zs. Inorg. Chim. Acta 1987, 139, 141.

Own memories from the last century

4070

Inorg. Chem. 1994, 33, 4070-4076

Kinetics of Formation and Dissociation of Lanthanide(III)-DOTA Complexes

Éva Tóth, Ernö Brücher,* István Lázár, and Imre Tóth

Department of Inorganic and Analytical Chemistry, Lajos Kossuth University, Debrecen H-4010, Hungary

$$Ln^{3+} + H_i DOTA \rightleftharpoons Ln(H_2 DOTA)^+ + (i-2)H^+ \quad (3)$$
$$Ln(H_2 DOTA)^+ \xrightarrow[-H^+]{slow} Ln(HDOTA) \xrightarrow[-H^+]{slow} Ln(DOTA)^- \quad (4)$$

.....

.

4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.0 3.7 3.6 3.5 5.4 3.3 3.2 3.1 3.0

Figure 4. ¹H-NMR spectra of DOTA in the presence of Gd^{3+} . $c_{DOTA} = 0.02 \text{ M}$; pD = 3.8; $c_{Gd} = 0$ (1), $5 \times 10^{-5} \text{ M}$ (2), $1 \times 10^{-4} \text{ M}$ (3), $3 \times 10^{-4} \text{ M}$ (4), $1 \times 10^{-3} \text{ M}$ (5), and $2 \times 10^{-3} \text{ M}$ (6). δ (acetate CH₂) = 4.5 ppm; $\delta(ring CH_2) = 3.6 ppm$.

Why do macrocyclic ligands form complexes with metal ions slowly?

Ln(DOTA)⁻ formed

Approximate half-lifes of the intermediates

At pH = 4.4 in 0.001 M solution of CeL

 $[Ce(CDTA)]^{-} t_{1/2} \le 0.1 \text{ sec.}$

 $[Ce(DOTA)]^{-} t_{1/2} \approx 12 \text{ min.}$

 $[Ce(DOTMA)]^{-} t_{1/2} > 100 h.$

[Ce(DOTA-4AMP)]⁵⁻ thermodynamically practically stable under these conditions

Formation kinetics of the complexes

 K_{Ln} is the conditional stability constant of the accumulating intermediate, LnH_{y}L , and k_{r} is the formation constant at the given pH.

Dissociation of the complexes

Tuning the kinetic inertness of the complexes by making the ligands more rigid

 $Gd(p-NO_2-Bz-OXAAZA) + Zn^{2+} \implies Zn(p-NO_2-Bz-OXAAZA) + Gd^{3+}$

Tuning the kinetic inertness of the complexes by making the ligands more rigid

Ligand	Ln ³⁺	Ce ³⁺	Eu ³⁺ or Gd ³⁺	Yb ³⁺
ΟΧΑΑΖΑ	k ₀ s ⁻¹	(5.9±0.4)×10 ⁻⁷	(1.4±0.3)×10 ⁻⁷	(2.0±1.2)×10 ⁻⁷
UXAAZA	$k_1 \mathrm{M}^{-1}\mathrm{s}^{-1}$	(0.22±0.01)	(1.19±0.06)×10 ⁻²	(4.05±0.08)×10 ⁻²
p-NO ₂ -Bz-	$k_0 \mathrm{s}^{\text{-1}}$	-	(6.1±0.7)×10 ⁻⁸	-
ŌXAĀZA	$k_1 \mathrm{M}^{ ext{-}1}\mathrm{s}^{ ext{-}1}$	-	(3.7±0.4)×10 ⁻³	_
	$k_0 { m s}^{-1}$	_	not detected	_
DTPA ⁱ	$k_1 { m M}^{-1}{ m s}^{-1}$	-	0.58	-
	$k_2 \mathrm{M}^{-2}\mathrm{s}^{-1}$	-	9.7 ×10 ⁻⁴	-
	$k_3 \mathrm{M}^{-1}\mathrm{s}^{-1} (\mathrm{k_3}^{\mathrm{Eu}}, \mathrm{k_3}^{\mathrm{Cu}})$ and $\mathrm{k_3}^{\mathrm{Zn}}$	-	4.9 ×10 ^{-4,} 0.93 and 5.6 ×10 ^{-2,}	-

a). i). L. Sarka, L. Burai, E. Bru"cher, Chem. Eur. J. 6 (2000) 719–724.

Optimal Ln-complexes from kinetic point of view

- ✓ Possible quick complex formation
- Engineering point of view (i.e. cheaper for Gd), but essential for some short lived radioisotopes

Easy(er) characterisation of the complex, good for students...

Non-toxicity, i.e. high thermodynamic stability and kinetic inertness (i.e. slow dissociation)

Ideal case: no any dissociation of LnMC before the complete excretion

Some useful references

1. E. Brucher, D. A. Sherry in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging— Stability and Toxicity of Contrast Agents (Eds.: E. Toth, E. Merbach Andre), Wiley, New York, 2001, pp. 243 – 279.

2. E. Brucher in Contrast agents I. Magnetic resonance imaging. Topics Current Chemistry – Kinetic Stabilities of Gadolinium(III) Chelates Used

as MRI Contrast Agents (ed. W. Krause), Springer Verlag, Heidelberg, 2002, Vol. 221. pp. 103-122

Three series of "Topics Current Chemistry" books were dedicated to the chemistry of contrast agents: Vol. 221, and 252

3. R. Delgado, J. Costa, K. P. Guerra, L. M. P. Lima, Lanthanide complexes of macrocyclic drivatives useful for medical applications, *Pure Appl. Chem.*, Vol. 77, No. 3, pp. 569–579, 2005.

4. G. Anderegg, F. Arnaud-Neu, R. Delgado, J. Felcman, K. Popov, Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications, *Pure Appl. Chem.*, Vol. 77, No. 8, pp. 1445–1495, 2005.

5. P. Hermann, J. Kotek, V. Kubicek, I. Lukes, Gadolinium(iii) complexes as MRI contrast agents: ligand design and properties of the complexes, Dalton Transactions Vol. 23, 3027-3047, 2008.

6. Review journals like:

Chemical Society Reviews: http://www.rsc.org/publishing/journals/cs/article.asp

Chemical Reviews: http://pubs.acs.org/journal/chreay

Coordination Chemistry Reviews:

http://www.elsevier.com/wps/find/journaldescription.cws_home/500845/description#description Pure and Applied Chemistry: http://www.iupac.org/publications/pac/index.html Who is the expert? / definition of expert

Logos Quotes <quotation@logosquotes.org Date: Fri, 01 Sep 2006 18:26:58 +0200 Author - Niels Bohr (1885-1962)

An expert is a man who has made all the mistakes which can be made in a very narrow field.

Bohr and <u>Einstein</u> debating quantum theory at <u>Ehrenfest</u>'s home in Leiden (December 1925).

Acknowledgement

Torino, Italy

Silvio Aime, Enzo Terreno and Dario Longo

Debrecen, Hungary

Ernő Brücher

Gyula Tircsó

Erika Ádom

Zsolt Baranyai

Tamara Kócs

The authors thank the Hungarian Scientific Research Found (K-84291) and the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project implemented through the New Hungary Development Plan, co-financed by the European Social Fund and the European Regional Development Fund for financial support of this work. Part of the research was performed within the framework of the EU COST Action D38 "Metal-Based Systems for Molecular Imaging Applications".

