

Education and Culture DG Lifelong Learning Programme	Intensive programme Design, Synthesis and Validation of Imaging Probes Turin (Italy) – September 19 to 30, 2011
4926	J. Med. Chem. 2006, 49, 4926-4936
In Vitro and in Vivo Magnetic Resonance Detection of Tumor Cells by Targeting Glutamine Transporters with Gd-Based Probes Simonetta Geninatti Crich, ^{†,#} Claudia Cabella, [‡] Alessandro Barge, ^{‡,#} Simona Belfiore, ^{†,#} Cristina Ghirelli, [‡] Luciano Lattuada, [#] Stefania Lanzardo, [⊥] Armando Mortillaro, ^{†,#} Lorenzo Tei, ^{†,#} Massimo Visigalli, [‡] Guido Forni, [⊥] and Silvio Aime*, ^{†,#}	
¹ O ₂ C ² N ² COHN ¹ O ₂ C ² N ² CO ₂ ² CO ₂ ² ¹ O ₂ C ² N ² N ² CO ₂ ² Na ⁺ Na[Gd-DOTAMA-Gin]	NH ₂ 3.0x10 ⁴ C6 HTC Neuro2a 2.0x10 ⁴ 2.0x10 ⁴
² gOC N COHN Gd ³⁺ ² gOC N N CO ₂ Na ⁺ Na[Gd-DOTAMA-C _f -Gln]	(COHN) (COHN) (CO) (COHN) (CO) (COHN) (CO) (COHN) (CO) (COHN) (CO) (COHN) (CO) (COHN) (CO) (COHN) (CO

