Hyperpolarized MRI: metabolic imaging

"Classic " MRI

Magnetic Resonance Imaging (MRI) is based on the observation of water ¹H nuclei (100% natural abundance, great quantity of water in living organisms).

Signal intensity depends on proton density and relaxation times T_1 and T_2 .

CONTRAST: difference in signal intensity between adjacent regions of the image

Contrast agents: substances which enhance the contrast in the image. Usually they are paramagnetic metal complexes which alter the relaxation rates of water protons.

information about tissue morphology

no information about molecules

Chemical shift information \rightarrow metabolites can be detected in vivo

Metabolic information from MRS

Informations about the metabolic state of a tissue can be obtained from MRS of nuclei such as ¹H, ¹³C, ¹⁹F, ³¹P.

³¹P MRS of calf muscle

metabolic processes are altered in diseased tissues

T₁ weighed image of brain with tumor; comparison between ³¹P spectra of the healthy region (top) and brain tumor (bottom)

metabolic processes are altered in diseased tissues

Chemical Shift Imaging

High grade glioma

 ${\rm T}_1$ weighted image

. space resolution is low. long acquisition time,. no real time metabolicinformation...

Metabolic maps (¹H-CSI) of NAA (left) and choline, NAA is decreased in tumor while choline is elevated

What does "hyperpolarization" mean?

MR signals can be enhanced (theoretically) up to 10⁵ times

Main features of hyperpolarized CA

Contrast is given by the molecule itself, not by the modulation of the water signal

The endogenous signal is usually zero: optimal contrast, but ¹H images are necessary for anatomic information

Hyperpolarization tends to disappear due to relaxation processes (longitudinal relaxation) and cannot be restored

→slowly relaxing signals: heteronuclei (¹³C, ¹⁵N) are preferred small molecules (small τ_c, long T₁) quaternary ¹³C groups, carbonyl, deuterated groups...)

Routes to hyperpolarziation

BruteForce

The "Brute Force" approach

$$P = \frac{\left|N_{+} - N_{-}\right|}{N_{+} + N_{-}} = \tanh\left(\frac{\gamma\hbar B_{0}}{2k_{B}T}\right)$$

Hyperpolarization is achieved by applying High Field and Ultra-low Temperature conditions

Technical issues due to drastic conditions

Laser-Polarized ³He and ¹²⁹Xe

Applications

- MRI of the lungs
- perfusion studies
- ventilation studies
- diffusion studies in emphysema diagnosis
- functional MRI (which exploits the solubility and lipophilic properties of Xe)
- blood oxygenation measurements (by exploiting Xe binding to haemoglobin)

Coronal HP ³He image of the lungs of a normal healthy human volunteer (Magn. Res. Med. 2002, 47, 1029-1051)

Dynamic Nuclear Polarization (DNP)

Principle of the method

Solid material doped with unpaired electrons

 P_{e} = 94% and P_{C} = 0.086%

-glassy solution of the polarizing material and a paramagnetic molecule (unpaired electron)
-Low temperature (1K)
-High magnetic field (3T)
-Microwave irradiation

Microwaves allow polarization transfer from electrons (Pe 95%) to nuclei (Pc 0.08 %) through nOe

Dynamic Nuclear Polarization (DNP)

Steps to polarization

- A solution of the substrate and a stable radical (usually a nitroxide- or triaryl-based radical) is made (it must form a glass when freezed)
- The solution is placed into a strong magnetic field (3T).
- The solution is frozen (tipically at 1.5 K)
- microwave irradiation is applied (about 1-2 hours)
- polarization transfer takes place
- -Switch off rf
- -the sample is raised upon the liquid Helium level
- Dissolution in hot water (inside the magnet)
 Quick transfer for observation in the NMR scanner.

Dynamic Nuclear Polarization (DNP)

pros

Potentially **any nucleus** in **any molecule** may be polarized by DNP

cons

Quite expensive equipment Cryogenic fluids are consumed Long polarization time is necessary

Ardenkjaer-Larsen et al., PNAS 2003

DNP hyperpolarized contrast agents

Early examples.

¹³C coronal projection images of a rat obtained after injection of DNP HP ¹³C-urea (angiography)

Immediately after completing the injection of the contrast agent:

 H_2N

()

NH₂

¹³C-enriched

Golman K.et al., Proc. Natl. Acad. Sci. USA 2003, 100, 10435

DNP hyperpolarized contrast agents – Metabolic Imaging

1-¹³C-pyruvate

Pyruvate is a key-molecule in major metabolic and catabolic pathways in the mammalian cells, as it is converted to alanine, lactate or carbonate to a different extent depending on the status of the cells

Metabolic production of Lactate and Alanine after the injection of ¹³C-polarized pyruvate

Different tissues have different metabolism

CSI acquisitions show metabolite maps and idividual spectra at each tissue tipe

Kohler S.J. et al., Magn. Res. Med. 2007, 58, 65

Metabolic processes are altered in tumors

¹³C MRS from prostate tumor slice of a TRAMP mice

Figure 1. *A*, diagram of the $[1^{-13}C]$ pyruvate and the metabolic pathways relevant to this study. The hyperpolarized ^{13}C spectra (*B*) and peak height plots (*C*) show the time course for the hyperpolarized $[1^{-13}C]$ pyruvate and its metabolic products following the injection of 350 µL of hyperpolarized pyruvate. The pyruvate was injected at a constant rate from 0 to 12 s. The MR spectra were acquired every 3 s from a 28-wk-old TRAMP mouse with a high-grade primary tumor using a 5° flip angle and a 10-mm-thick slice. The peak height plot was corrected for the amount of magnetization used to record the previous n spectra by dividing each peak height by $\cos^{n}(5^{\circ})$. The hyperpolarized pyruvate quickly reached a maximum at 24 s before being converted to lactate and alanine. Based on this time course, the subsequent MRSI data were recorded between 35 and 49 s, a time when the hyperpolarized lactate signal was roughly constant. *Glut.*, glutamate; α -*KG*, α -ketoglutarate; *ALT*, alanine transaminase.

¹³C spectra acquired with 5° pulses, 10mm slice centered on the primary tumor (prostrate cancer)

M.J Albers, Cancer res. 2008

1-¹³C- Pyruvate in tumors

Higher lactate production in tumor than in other tissues

Vena cava Muscle tissue

1-¹³C- Pyruvate in tumors

HP pyruvate allow to monitor the tumor progression (spectra taken from CSI voxels)

The amount of lactate is grade dependent, low grade and high grade tumors can be distinguished.

1-¹³C- Pyruvate for the assessment of cardiac metabolism

The bicarbonate level in the myocardium is indicative of ischemic or postischemic tissue, being lower or absent in the areas where ischemia was present due to a decreased activity of pyruvate deyhdrogenase (PDH)

¹³C-CSI maps of lactate, alanine, bicarbonate and pyruvate from a pig heart obtained pre- and post-45-min occlusion

Production of HP $[1,4^{-13}C_2]$ -malate from $[1,4^{-13}C_2]$ -fumarate as a marker of cell necrosis and tumor response to treatment

Tumor response to treatment is currently addressed by changes of tumor size or by means of FDG-PET

Images from untreated (A) and etoposide-treated (B) mice with implanted lymphoma tumors

The increased malate production in necrotic or treated cells is explained by increased access of fumarate to fumarase

PNAS 2009, 106, 19801

Production of HP $[1,4^{-13}C_2]$ -malate from $[1,4^{-13}C_2]$ -fumarate as a marker of cell necrosis and tumor response to treatment

Tumor response to treatment is currently addressed by changes of tumor size or by means of FDG-PET

Fig. 1. ${}^{13}C$ spectra acquired over a period of 1 min after injection of hyperpolarized $[1,4-{}^{13}C_2]$ fumarate into suspensions of intact murine lymphoma cells ($\approx 5 \times 10^7$ cells) or lysed cells; these are representative spectra from the data shown in Fig. 2. For clarity, only every third spectrum is shown and each series has been scaled to the maximum fumarate signal. (A) Untreated cells. (B) Cells 16 h after etoposide treatment. (C) Lysed cells. The truncated signal from the hyperpolarized $[1,4-{}^{13}C_2]$ fumarate is at 175.4 ppm, the signal from $[1-{}^{13}C]$ malate at ≈ 181.8 ppm, and the signal from $[4-{}^{13}C]$ malate at ≈ 180.6 ppm.

¹³C-acetate (P = 25%) – fatty acid metabolism

Acetate <u>CoA</u> AcCoA <u>Carnitine</u> AcetylCarnitine + CoA

After injection of HP ¹³C-acetate, its metabolic conversion to ¹³C-acetyl-CoA and ¹³C-acetylcarnitine is observed

Reduced acetate metabolism is observed after ischemia

¹³C-bicarbonate (P = 20%) – pH evaluation *In-vivo* pH measurement ¹³C-bicarbonate-CO₂ pKa = 6.17Carbonic anhydrase $^{13}CO_{2} + H_{2}O_{2}$ $H^{13}CO_3^{-} + H_3O^{+}$ **Slow exchange**: two separate signals HCO_3^- and CO_2^- HCO_ 7.3 а 7.1 6.9 MRS pH [HCO₃-] $pH = pK_a - log$ $[CO_2]$ 6.0 100 100 H¹³CO₃ CO2 80 80 60 60 180 160 140 120 40 40 Chemical shift (p.p.m.) 20 20 ¹³C spectrum of murine lymphoma in vivo (pH 0 \approx 6), after the intravenous injection of **a**, ¹H image of a mouse with a subcutaneously implanted EL4 tumour (red). hyperpolarized $H^{13}CO_3^{-}$,

b, pH map calculated from the ratio of the $H^{13}CO_3^{-}$ (**c**) and ${}^{13}CO_2$ (**d**) voxel intensities in ¹³C chemical shift images after intravenous injection of 100 mM hyperpolarized $H^{13}CO_3^{-1}$.

³CO₂ (% of maximum)

Gallagher, F. et al. Nat. Lett. 2008 (vol. 453)

HP-¹³C labelled [U-²H, U-¹³C] **glucose** (P= 15%)

The whole glycolitic pathway is monitored in cell cultures

6PG: 6-phosphogluconate; DHAP: dihydroxy acetone phosphate

HP-¹³C labelled [U-²H, U-¹³C] **glucose** (P= 15%)

Glycolisys is monitored in vivo in mice bearing lymphoma and lung tumors Lactate is observed after 10 enzimatic steps

T.B. Rodrigues et al. Nat.Med. 2014

ParaHydrogen Induced Polarization

ParaHydrogen Induced Polarization

Hyperpolarization is obtained from non-equilibrium spin states population

¹³C- ParaHydrogen Induced Polarization

¹³C- ParaHydrogen Induced Polarization

The antiphase signal obtained after polarization transfer to ¹³C must be converted into an in-phase signal in order to be suitable for image acquisition. This can be achieved by a magnetic field cycling procedure or by applying an opportune pulse sequence to the sample

PHIP

on ¹³C of biologically relevant molecules

Unsaturated precursor available

Phospho-Lac

Binding of a parahydrogenable group to a biological substrate

¹³C-PHIP polarized succinate

Chekmenev E.Y. et al., JACS 2008, 4212

13C image of rat brain using 13C-PHIP succinate

¹³C-PHIP Phospho Lactate

Para-H₂ containing molecules as hyperpolarized contrast agents

Preparation of pure hyperpolarized water-soluble compounds by para-hydrogenation and phase extraction

A lipophylic precursor of the compound of interest is para-hydrogenated in an organic solvent not miscible with water, then it is quickly converted to the hydrophilic derivative by addition of an aqueous medium and it is extracted in the water phase as a pure compound.

The procedure allows to obtain pure water solution of the compounds of interest in one step only by a simple phase extraction process, avoiding the use of high para-H₂ pressures and expensive experimental set-ups.

Para-H₂ containing molecules as hyperpolarized contrast agents

Example: para-hydrogenation of maleic anhydride and subsequent hydrolisis afford succinic acid

(a) Succinic anhydride obtained by parahydrogenation of maleic anhydride in acetone-d⁶

(b) hyperpolarized succinic acid obtained by para-hydrogenation of maleic anhydride in acetone-d⁶ and successive hydrolysis

(c) hyperpolarized succinic acid obtained by para-hydrogenation of maleic anhydride in CDCl_3 and successive hydrolysis and extraction in basic D_2O

Conclusion

Metabolic imaging is currently carried out using DNP polarization

High polarization level, any molecule can be polarized High costs, technically challenging, few polarizers

ParaHydrogen Induced Polarization

Easily accessible technique, but few molecules can be polarized: research is ongoing...