

In vivo preclinical Imaging Guided Therapy

Simonetta Geninatti Crich University of Torino, (Italy)

PERSONALIZED MEDICINE

A form of medicine that uses information about a person's genes, proteins, and environment to prevent, diagnose, and treat disease. In cancer, personalized medicine uses specific information about a person's tumor to help diagnose, plan treatment, find out how well treatment is working, or make a prognosis. Examples of personalized medicine include using targeted therapies to treat specific types of cancer cells, such as HER2-positive breast cancer cells, or using tumor marker testing to help diagnose cancer. Also called precision medicine.

(1) Pre-treatment diagnostic test

(2) Imaging Guided Therapy

The current challenge for MRI contrast agents is in the field of Molecular Imaging

NANOTECHNOLOGY for IMAGING GUIDED DRUG DELIVERY

Imaging Modalities: range of detection

Courtesy of H. Siebold, Siemens Medical Solutions

Magnetic Resonance Imaging

-Non invasive and repetitive imaging
-High resolution
-Absence of radiation
-Total tissue penetration
-Low sensitivity

MRI Contrast Agents

Inner Sphere

Clinical MRI Contrast Agents

Clinical dose 0.1 mmol/Kg

BRAIN MRI IMAGES

PRE

Signal Intensity (SI) \propto [CA]

Nanoparticles for imaging guided drug delivery

C3d peptide

Grange, Geninatti-Crich, Esposito, Alberti, Tei, Bussolati, Aime, Camussi, Cancer Res, 2010

CARRIER

Combined Delivery of MRI contrast agents and doxorubicin through in Experimentally Induced Kaposi's Sarcoma

If the target receptor is expressed by cells in solid tumors the extravasation of the theranostic agent is needed

-In solid tumors the vessels formed by the process of angiogenesis show an Increase permeability due to large fenestrae (up to 400 nm)

-**N**ormal vasculature endothelium consists of a continuous lining of endothelial cells tightly connected with each other.

Osamu I. et al International Journal of Pharmaceutics 190 (1999) 49–56 Pavan P. Nanomedicine and Nanotechnology, 2010

THERANOSTIC AGENTS BIODISTRIBUTION DETECTED BY MRI

Therapeutic responses of SCID mice inoculated with Kaposi cells

Treatments (5 mg/kg doxorubicin) were on days 12, 19, 26 (indicated by the arrows).

Electronmicroscopy analysis of tumors

- TARGETED LIPOSOME
- NOT TARGETED LIPOSOME

INTRACELLULAR EXTRACELLULAR

Apoferritin as carrier for imaging and therapeutic agents

Ferritin receptors (SCARA-5) are highly expressed on hepatocytes

Fisher J et al Am. J. Physiol. Cell. Phisiol, 293, 2007. Jian Huang et al The Journal of Clinical Investigation, 120,2010 Jau Yi Li et al, Developmental Cell 16, 35–46, January 20, 2009

Cutrin JC, Geninatti Crich S, Burghelea D, Dastrù W, Aime S, Mol Pharm. 2013;10(5):2079.

Biological activities of curcumin

Advantages:

- Safety even at high doses (12 g/day)
- Good tolerability
- Multi-target compound with multiple therapeutic effect

Disadvantages:

- Low bioavailability
- Poor water solubility
- Low stability in water (in particular at neutral and basic pH)

Tanya Das et al Mol Cell Biochem (2010) 336:85–95; Marie-Hélène Teiten et al Toxins, 2010.

How to include Gd-HPDO3A and Curcumin in Apoferritin?

The number of molecules that remained entrapped in the apoferritin after dissociation/reassociation procedure is 9.5±2 and 0.4±0.1 for subunit (24 subunits/protein in the native form) for curcumin and Gd-HPDO3A, respectively.

Attenuation of thioacetamide-induced hepatitis by curcumin

- Thioacetamide (TA) has been employed for several years in the development of a model of acute liver injury in rodents.
- -The i.p. administration of high doses (60-100mg/kg) of TA causes fulminant hepatic failure as a consequence of enhanced ROS and lipid peroxides formation, and stimulation of NF-kb and resultant production of pro-inflammatory molecules. *(Rivera-Espinoza et al, Liver international 2009.)*

In this study mice were divided into three groups.
Group A received TA (60 mg/kg) intraperitoneal (ip)
Group B was pretreated 24 h before TA ip administration (60 mg/kg)
with APO-CUR-Gd ip (63 mg/kg)
Group C (control) received an equal volume of sterile 0.9% NaCl solution instead of TA

MRI evaluation of Apo-CUR-Gd biodistribution

Liver [curcumin] = 250 μ g/g (8 times higher than the amount found after the i.p. administration of curcumin alone (*A. Goel, Biochemical pharmacology 2008.*)

Hepatic Injury Evaluation 24h after TA administration

Z₂

UNTREATED CTRL LIVER

TA TREATED LIVER

TA + APO-CUR-Gd TREATED LIVER

Low Density Lipoproteins as Theranostic Agents

-Several examples of successful <u>delivery of drugs and imaging agents</u> through targeting of <u>LDL receptors</u> have already been reported.

-Altered LDLr levels are found in a variety of pathological conditions.

- Several rapidly dividing tumor cells over-express LDLr to supply the high cholesterol demand.

Boron neutron capture therapy (BNCT)

In order to be successful, a sufficient amount of ¹⁰B must be selectively delivered to the tumor (ca. 20-30 ppm) whereas ¹⁰B concentration in the surrounding normal tissues should be low (<5 ppm).

BNCT drugs available for clinical investigation

A Boron/Gd/LDL adduct for Imaging-guided Neutron Capture Therapy

S Aime, et al Org. Biomol. Chem., 2008, 6, 4460–4466 Geninatti-Crich et al. Chemistry. 2011 Jul 18;17(30):8479-86. MRI analysis (Bruker 7T) on Pulmonary Metastasis obtained injecting i.v. 50000 TUBO cells (mammary carcinoma) three weeks before irradiation

T1 weighted AXIAL IMAGES

Boron concentration Tumor: 43 ug/g Muscle: 16 ug/g

BNCT at the TRIGA-Mark-II reactor, LENA, Pavia

Neutron irradiation 7 minutes; Reactor Power 250 kW

6h after Boron administration

95% ⁶Li-enriched lithium carbonate

In collaboration with N. Protti, F. Ballarini, S. Bortolussi, S. Altieri, ¹University of Pavia, Department of Nuclear and Theoretical Physics

T2-weighted lung metastasis RARE images

30 Days after BNCT

Irradiiated and boron treated mice

WO

Relative tumor volume measured by MRI after irradiation (15 minutes, TRIGA-Mark-II reactor, LENA, Pavia) Reactor power : 250 kW

<u>Acknowledgements</u>

Silvio Aime Diego Alberti Marta Cadenazzi D. Burghelea *W. Dastrù*

J. Cutrin

L. Conti

F. Cavallo

S. Lanzardo

Cristina Grange

Giovanni Camussi

Marta Tapparo

University of Torino Department of Molecular Biotech MOLECULAR IMAGING LAB

University of Torino Department of Molecular Biotech

4.4

S. Altieri N. Protti S. Bortolussi University of Pavia Department of Nuclear and Theoretical Physics

Action TD1004

Regione Piemonte (PIIMDMT and nano-IGT projects), MIUR (PRIN 2009235JB7)