Basic principles and procedures of solid phase peptide synthesis

Lorenzo Tei, PhD

Dipartimento di Scienze dell’Ambiente e della Vita
Università del Piemonte Orientale “Amedeo Avogadro”
Viale T. Michel 11, 15121, Alessandria

Contents:

- Introduction
- Historical background
- Different strategies for SPPS
- Possible problems
- Aminoacids and protections
- Amide bond formation
- Solid supports and linkers
- Analytical tests
- Peptide isolation and purification
Applications of synthetic peptides

Immune peptides:
- Synthetic antigens: vaccines
- Diagnostic tools
- Immunostimulator peptides: muramyl dipeptide tuftsin derivatives

Hormones:
- Oxytocin
- Vasopressin
- Insulin
- Somatostatin
- GnRH etc.

Neuropeptides:
- Cholecystokinin
- Neurotensin

Antibiotics:
- Tachikinin
- Gramicidin S

Toxins:
- Conotoxins
- Spider toxins
- Snake toxins
- Ion channel blockers

Transporter peptides:
- Penetratin
- Oligoarginine
- HIV-Tat protein

Carriers:
- Deliver diagnostic or therapeutic agents to targeted cells

Enzymes and enzyme inhibitors:
- Ribonuclease A

Peptides for structural studies:
- Turn mimicking cyclic peptides

WHY PEPTIDES?

Advantages of utilizing peptides as therapeutic molecules:

- High activity
- High specificity
- Unique 3D characteristics
- No accumulation in organs
- Low toxicity
- Less immunogenic than antibodies

- They can be made synthetically, by recombinant methods or by chemical modification of an isolated natural product.
Peptides developed for therapeutic applications:

- Allergy/Asthma
- Arthritis
- Cancer
- Diabetes
- Cardiovascular diseases
- Inflammation
- Vaccines
- Ophtalmology
- Central Nervous System diseases
- Antiviral
- Antibacterial

Peptide synthesis:

Solution synthesis:
- Optimisation of reaction conditions and yields.
- Purification of every step.
- Time consuming.
- Synthesis of small peptides.
- Useful for large-scale manufacturing.

Solid phase synthesis:
- Anchoring of the peptide chain on a resin.
- Use of excess reagents removed by filtration and washing procedures.
- Simple, rapid and repetitive steps.
- High yields.
- Possible automation
- Synthesis of long peptides.
Beginnings of the SPPS

- Merrifield in 1963 introduced the use of a polystyrenic support for the synthesis of peptides.
- Development of the Boc strategy (use of quite strong acidic conditions)
- In the ’70 different polymeric supports and more labile protecting groups were developed.
- In 1978 the Fmoc-based SPPS was introduced.
- In the last 15 years the Fmoc approach has prevailed over the Merrifield SPPS.

Solid phase peptide synthesis

The idea:

- **R** = resin
- **T** = NH$_2$ protecting group (boc, Fmoc)
- **P** = side chain protecting group

- Coupling (H$_2$O)
- Deprotection
- Anchoring
Fmoc strategy in SPPS

Attachment

\[
\text{Fmoc} \quad R' \quad \text{Polimer} \quad \xrightarrow{\text{Attachment}} \quad \text{Fmoc} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R' \quad \text{Polimer}
\]

\(R' = \text{OH, NH}_2, \text{Cl} \)

Deprotection

\[
\text{Fmoc} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R'' \quad \text{Polimer} \quad \xrightarrow{\text{Deprotection}} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R' \quad \text{Polimer}
\]

Coupling

\[
\text{Fmoc} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R'' \quad \text{Polimer} \quad \xrightarrow{\text{Coupling}} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R' \quad \text{Polimer}
\]

Repeat deprotection and coupling

\[
\text{Fmoc} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R'' \quad \text{Polimer} \quad \xrightarrow{\text{Repeat deprotection and coupling}} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R' \quad \text{Polimer}
\]

Cleavage

\[
\text{Fmoc} \quad \begin{array}{c} \text{NH} \\ \text{O} \end{array} \quad R'' \quad \text{Polimer} \quad \xrightarrow{\text{Cleavage}} \quad \text{Peptide and Polimer}
\]
Fmoc deprotection

The Fmoc deprotection reaction is a key step in solid-phase peptide synthesis (SPPS), where Fmoc-protected amino acids are coupled to a resin and then deprotected to yield the desired peptide. The reaction involves the removal of the Fmoc group, which is typically accomplished using a mixture of HF and DIEA (Diisopropylethylamine)

Boc Strategy in SPPS

The Boc strategy in SPPS is another method for synthesizing peptides, where the Boc group is used as a protecting group. This strategy involves the attachment, coupling, deprotection, and cleavage steps.

The Boc approach needs to use highly toxic liquid HF for cleavage from the resin.
Boc deprotection

$$\text{R NH}_2 + \text{CO}_2$$

$$\text{R NH}_2 + \text{CO}_2$$

Common AA side-chain protecting groups used in Fmoc SPPS

<table>
<thead>
<tr>
<th>Side-chain functionality of amino acids</th>
<th>Commonly used protecting group</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td></td>
<td>Pbf</td>
</tr>
<tr>
<td>Asp, Glu, Ser, Thr, Tyr</td>
<td>tBu</td>
<td></td>
</tr>
<tr>
<td>Lys, Trp</td>
<td>Boc</td>
<td></td>
</tr>
<tr>
<td>Asn, Gln, Cys, His</td>
<td>trt</td>
<td></td>
</tr>
</tbody>
</table>
Coupling methods in Fmoc SPPS

Pre-activation method:

- Pre-activation of the acid via activated esters.
- N-hydroxysuccinimide (ONSu); slow formation of the amide bond.
- Pentafluorophenyl (OPfp) ester; in the presence of HOBT the rate of reaction is very rapid.

Coupling methods in Fmoc SPPS

In situ - activation method:

- Carbodiimides (DCC and DIC)
- Benzotriazole PF₆ salts (HBTU, PyBOP, HATU)
The use of HOBT minimises the formation of unreactive N-acylurea.
Solid supports:

- Dry polystyrene beads have an average diameter of 50 µm, but in DMF or DCM they swell 2.5 to 6.2 fold in volume.
- SPPS takes place within a well solvated gel containing mobile and reagent accessible peptide chains.
- Small particle sized resins with low cross linking allows rapid diffusion of reagents inside the beads.
- Solid support and peptide backbone may be of comparable polarities (polyamides, PEG).

Resins for SPPS

<table>
<thead>
<tr>
<th>Resin</th>
<th>Composition</th>
<th>Functional group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloro/Aminomethyl polystyrene</td>
<td>1% divinylbenzene cross-linked polystyrene</td>
<td>CH₂Cl, CH₂NH₂, benzhydrylamino</td>
</tr>
<tr>
<td>Tentagel</td>
<td>Polystyrene-polyethylene glycol graft polymer</td>
<td>CH₂OH, CH₂NH₂</td>
</tr>
</tbody>
</table>

[n]_Tentagel Polystyrene
[polyethylene glycol
[Cl]_Chloro/Aminomethyl polystyrene
[CH₂Cl]_CH₂Cl
[CH₂NH₂]_CH₂NH₂
[benzhydrylamino]_benzhydrylamino
[CH₂OH]_CH₂OH
Resins for SPPS

<table>
<thead>
<tr>
<th>Resin</th>
<th>Description</th>
<th>Linker</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEGA</td>
<td>Bis 2-acrylamidoprop-1-yiPEG, 2-acrylamidoprop-1-yi[2-aminoprop-1-yi]PEG dimethylacrylamide co-polymer</td>
<td>CH₂NH₂</td>
</tr>
<tr>
<td>Novagel™</td>
<td>(4'-O-methylpolyethylene glycoxy carbonylaminomethyl)polystyrene</td>
<td>CH₂NH₂</td>
</tr>
</tbody>
</table>

Linkers:

The purpose of the linker are:

- provide a reversible linkage between the synthetic peptide chain and the solid support.
- Protect the C-terminal α-carboxyl group during the process of chain extension.
- Most linkers release peptide acids or amides upon treatment with TFA.
- Some linkers permit the cleavage with nucleophiles, used for the preparation of C-terminal modified peptides such as esters secondary amides, aldehydes, alcohol.
Linkers:

<table>
<thead>
<tr>
<th>Hydroxymethyl-based linkers</th>
<th>Aminomethyl-based linkers</th>
<th>Trityl chloride-based linkers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang linker (Hydroxymethylphenox)</td>
<td>Rink linker (trialcoxybenzyldiamine)</td>
<td>2-Chlorotriethyl chloride</td>
</tr>
<tr>
<td>Sasrin linker</td>
<td>PAL linker (trialcoxybenzylamine)</td>
<td>Bayer's 4-carboxytrityl linker</td>
</tr>
<tr>
<td>HMBA linker</td>
<td>Sibber linker (9-Aminoxanthenyl)</td>
<td></td>
</tr>
<tr>
<td>Rink acid linker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resin handling procedures

- Apart from PEGA resin, all resins have to be swollen before use.
- Underivatized polystyrene resins swell only in dichloromethane.
- All the other are swollen in DMF.
- Resins (except PEGA) can be dried under vacuum without damage.
- Resins are fragile and has to be handled carefully (do not use magnetic stirrers!)
Attachment of 1st amino acid

For hydroxymethyl based linkers quite harsh conditions has to be employed:
1. use of the symmetrical anhydride of the Fmoc amino acid and DMAP in DMF.
2. Use of the Fmoc amino acid and dichlorobenzoyl chloride in DMF/pyridine

\begin{align*}
\text{Attachment of 1st amino acid} & \\
\text{1. Use of the symmetrical anhydride of the Fmoc amino acid and DMAP in DMF} & \\
\text{2. Use of the Fmoc amino acid and dichlorobenzoyl chloride in DMF/pyridine} & \\
\end{align*}

Attachment of 1st amino acid

Trityl based linkers:
1.

\begin{align*}
\text{Attachment of 1st amino acid} & \\
\text{Trityl based linkers:} & \\
\text{1.} & \\
\end{align*}

Aminomethyl-based linkers:
- Generally the amino function is Fmoc protected
- Standard piperidine deprotection and subsequent coupling of the 1st amino acid
Synthesis protocol:

- Swelling of the resin
- 1st Fmoc amino acid attachment
- Deprotection Fmoc group with piperidine in DMF
- Washings with DMF (between 5 to 10 times)
- Fmoc amino acid coupling (Activators/DIPEA/DMF)
- Washings with DMF
- Deprotection Fmoc and so on...
- After last coupling the resin has to be dried in vacuo before cleavage

Analytical tests

Qualitative amine tests:
- Kaiser test (ninhydrin test)
- TNBS test
- Chloranil test

Fmoc determination for estimation of first residue attachment:
- The loading of the 1st AA can be calculated determining the absorbance at 290 nm (dibenzofulvene formed in the Fmoc deprotection)
Possible problems

Aggregation
Peptide chains on resin can form secondary structures or aggregates either with other peptide chains or with the polymer support. Mainly caused by H-bonding and hydrophobic interactions (high proportion of Ala, Ile, Asn or Gin)

Enantiomerization
During coupling the acidity of the H atom on the α-carbon is enhanced by the carboxy group activation. May occur on attachment of Cys, His, Pro, Met, or Trp on hydroxymethyl-based resins

Side reactions
Rare if the AA are protected and the correct procedures are followed. Aspartimide formation can occur if Asp is coupled to Gly, Ser, Asn, Thr or Arg.

Aspartimide formation

Base catalyzed aspartimide formation involves attack by the nitrogen atom attached to the α-carboxy group of either aspartic acid or asparagine on the side chain ester or amide group, respectively. Nucleophilic attack then causes subsequent ring opening, which gives rise to a mixture of α-aspartyl and β-aspartyl peptides.
Diketopiperazine formation

- Peptides containing proline or N-alkylated amino acids attached via benzyl ester to the resin may have the problem of diketopiperazine formation.
- This not only causes a yield reduction but may also lead to the generation of truncated sequences.
- In these cases, it is better to use a more hindered trityl resin.

\[
\begin{align*}
\text{O} & \text{H} \\
\text{N} & \text{R'}
\end{align*}
\]

Cleavage from the resin

- 95% TFA for 1-3h cleaves the peptide from the resin and deprotect t-butyl groups, Pbf group from Arg, Trt group from Cys, Gln, Asn, and His.
- Highly reactive cationic species are generated that can react with amino acids containing electron rich functional groups: Tyr, Trp, Met, and Cys.
- Nucleophilic reagents (scavengers) are added to the TFA to quench these ions: water, 1,2-Ethandithiol (EDT), triisopropylsilane (TIS), thioanisole.
Cleavage cocktails

- If Cys is absent we normally use TFA, TIS 95:5 v/v.
- With Cys we add EDT (TFA, TIS, EDT; 95:3:2 v/v).
- With Met we add thioanisole (TFA, TIS, Thioanisole; 95:3:2 v/v).
- Reagent K (TFA, thioanisole, H₂O, phenol, EDT; 82.5:5:5:5:2.5 v/v).
- Reagent R (TFA, thioanisole, anisole, EDT; 90:5:3:2).
- With Chlorotrityl chloride resins protections on the AA side-chains can be maintained using DCM, AcOH, trifluoroethanol 80:10:10 v/v.
- With Trp a further step with a 5% water solution of AcOH is required to obtain the fully deprotected peptide.

Peptide isolation and purification

- Precipitated by addition of cold diethyl ether
- Directly from TFA solution or following evaporation of TFA and volatile scavengers.
- Centrifuge and wash with Et₂O 3 times
- Dry the solid in vacuo
- Purification by HPLC
- Characterisation by MALDI-TOF mass spectrum, NMR spectrometry.
Multisyntech SYRO II

Syro II automated peptide synthesizer

CEM Liberty

Liberty automated peptide synthesizer shown with single-mode microwave reaction vessel