Mn-Based MRI contrast

MEMRI neuro applications:

Bio Imaging Lab, University of Antwerp
Annemie van der Linden

Central nervous system

dentrites
neuron
axon
synapse
Manganese-enhanced MRI (MEMRI)

evolved in the late nineties when Alan Koretsky (NIH) and associates pioneered the use of MEMRI for brain activity measurements as well as neuronal tract tracing.

Using MnCl2 > Mn(2+)

Manganese-enhanced MRI (MEMRI) relies upon the following three main properties of Mn(2+):

(1) it is a paramagnetic ion that shortens the T(1)
(2) it is a calcium (Ca(2+)) analog that can enter excitable cells, such as neurons and cardiac cells via voltage gated Ca(2+) channels
(3) once in the cells Mn(2+) can be transported along axons by microtubule dependent axonal transport and can also cross synapses transynaptically to neighboring neurons.
How to get Mn2+ ions in the brain?
Manganese administration routes

systemic injection of MnCl₂:
intraperitoneal [i.p.]
subcutaneous [s.c.]
intravenous [i.v.]

Manganese administration routes
Systemic injections
Traversing the BBB?

- After a short systemic exposure, Mn2+ is cleared from the blood, in the range from minutes up to hours
- Increased influx into the brain > uptake mechanism at the level of the **choroid plexus and the ventricular ependyma**, rather than direct uptake through the BBB
- Identical results after **intraventricular injection**
Manganese administration routes
alternative administration routes
Traversing the BBB?

Alternatively, one can reversibly break the BBB
• by applying an osmotic shock during the intravenous infusion of Mn2+

Mn2+ can also be delivered directly into a particular brain ROI
• Via olfactory epithelium and the eye (circumventing the BBB)
• or more invasive via focal brain injections

Mn2+ uptake involves transport systems:
- calcium channels
- Na/Ca exchanger
- active calcium uniporter
- Na/Mg antiporter
- divalent metal transporter DMT1 (also known as DCT1 and NRAMP2)
- carrier-mediated, identity of the Mn2+-carrier(s) is unknown

Mn2+ efflux across the BBB
- does not appear to occur through a carrier but rather by diffusion
Chemical configuration and cellular uptake of manganese neurons

In excitable cells such as neurons

- Mn$^{2+}$ can be incorporated by **L-type voltage gated calcium channels**

- This was verified by utilizing Ca$^{2+}$ channel blockers (diltiazem or verapamil) which prevents the uptake of Mn$^{2+}$ into cells. This has been verified in brain as well as the heart

- Additional support comes from the accumulation of Mn$^{2+}$ in specific brain areas that contain neuronal populations with high spontaneous activity

Subcellular distribution and axonal transport of manganese

- The largest subcellular concentration of manganese is found in the mitochondria, endoplasmatic reticulum and lysosomes

- Excitable tissue, experiencing frequent Ca$^{2+}$ spikes, is likely to accumulate mitochondrial Mn$^{2+}$
Subcellular distribution and axonal transport of manganese

- mammalian axons exhibit two major anterograde transport processes with a differential speed
 - **Slow axonal transport** 0.01–0.33 mm/h and transports mitochondria
 - **Fast axonal transport** 2–16 mm/h within vesicles > Mn(2+)

- Interestingly, although the speed of fast axonal transport is constant, the amount of vesicles that can be transported per unit of time can change according to the neuronal activity

Subcellular distribution and axonal transport of manganese

Transsynaptic transport mechanism

- Mn2+ released at the synaptic cleft within synaptic vesicles together with glutamate

- Mn2+ incorporated in the post-synaptic cells by ligand-gated Ca channels such as NMDA receptors.

Fluorescence quenching techniques has shown this
MEMRI
neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations
Activation-Induced Manganese-Dependent MRI (AIM)MRI

- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
- Mn-binding enzymes
- Microglial activations

0.3 % halothane
3.6 µmol/min MnCl₂ infusion iv
- A: intact BBB
- B: unilateral BBB disruption
- C: difference image
- G: Mn infusion 30 sec before electrical forepaw Stimulation, and BBB rupture (mannitol)
neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM) MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
- Mn-binding enzymes
- Microglial activations

Dynamic activation induced manganese dependent contrast (DAIM) MRI

Aoki et al, MRM 48: 927, 2002
neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
- Mn-binding enzymes
- Microglial activations

For **tract tracing** one needs

- to target the area (inject MnCl2) from which the axonal projections start (shaping the circuit of interest)
- thus circumventing the BBB
 1. Obvious for sensoric system (less invasive, remote from the brain)
 1. Target nostrils (olfactory epithelium) to study the olfactory circuit
 2. Target the retina to study the visual circuit
 3. Target the auditory nerves to study the auditory system
 2. Less obvious: injections in the brain targeting a nucleus of the circuit
ME MRI tract tracing

Watanabe et al, *MRM, 46, 424, 2001*

Fig. 1 (sections indicated in Fig. 1). Enhanced structures are: (1) left retina, (2) left optic nerve, (3) optic chiasm, (4) right optic tract, (5) right lateral geniculate nucleus, (6) right brachium of the superior colliculus, (7) right pretectal region, and (8) right superior colliculus.

ME MRI tract tracing

other circuits: the song control system

Van der Linden et al,
Neuroscience 112, 467, 2002
Synaptic transport capacity of manganese

Tindemans et al. *NMRB*, 19, 18, 2006

MEMRI

Neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations
Activity dependent ME tract tracing

Pautler and Koretsky, Neuroimage, 16, 441, 2002

Activation of the main olfactory bulb with common odours

![Image of MRI images showing activation of the main olfactory bulb with common odours.](image)

FIG. 3. MRI images of the olfactory bulb of a mouse exposed to Mn^{2+} only (left) and Mn^{2+} plus amyl acetate (right). MEMRI images of the mouse were obtained 1.5 h after exposure to aerosolized Mn^{2+} alone or in the presence of amyl acetate. The localized accumulation of Mn^{2+} is seen as positive contrast enhancement in the olfactory bulb.

Pautler and Koretsky, Neuroimage, 16, 441, 2002

Activation of the accessory olfactory bulb with pheromones

![Image of MRI images showing activation of the accessory olfactory bulb with pheromones.](image)

FIG. 2. Accessory olfactory bulb enhancement by MEMRI after exposure to pheromones and Mn^{2+}. Areas enhanced are readily detected as bright regions in axial (left) as well as sagittal (right) slices. The arrowheads point to the bilaterally symmetric accessory olfactory bulb, which appears as bright circles in the axial slice and is located caudal in the olfactory bulb and rostral to the main cortical areas in the sagittal slice. Mice were exposed to pheromones (in the form of male mouse urine) as well as Mn^{2+} and enhancement in the accessory olfactory bulb always exhibited positive contrast enhancement (n = 15).
Activation-Induced Manganese-Dependent MRI (AIM)MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations

Dynamic Manganese Enhanced [DME]MRI
the song control system

- the dynamics of axonal manganese transport were monitored as manganese induced signal intensity (SI) enhancement in the projected areas

- Data are translated into a Hill plot (function describing a sigmoid curve)

- This so called Dynamic Manganese Enhanced [DME]MRI can then be used as a quantitative tool to monitor the activity of the projecting neurons in the injection area
Manganese Enhanced MRI

Pautler et al. (1998)

Mn$^{2+}$ is transported along axons of a circuit

Mn$^{2+}$ is a biological Ca$^{2+}$ analogue
Mn$^{2+}$ is paramagnetic

Dynamic Manganese Enhanced MRI: DME MRI

Mn$^{2+}$ is transported along axons of a circuit

Mn$^{2+}$ is a biological Ca$^{2+}$ analogue

Uptake and transport activity dependent
Van der Linden et al. *Neuroscience* 122: 467, 2002

Accumulation of Mn$^{2+}$ in Area X and RA

Study *repeatedly* the response of different neuronal populations in HVC to song using DME MRI

Follow Mn$^{2+}$ uptake in RA and X
Study repeatedly the response of different neuronal populations in HVC to song using DME MRI

Thick lines and full squares show the song-stimulated results, S_{max} provide a correlate for activity of that particular type of projecting neuron.

Conclusion:

Different response of RA projecting and Area X projecting HVC neurons to song exposure

Differentiate the activity of neuronal populations from the same nucleus without having the resolution to do so.
Neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM) MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations

- continuously infusing very low concentrations of Mn2+ into the target area using osmotic pumps coupled to chronically implanted brain cannulae.

- corticofugal somatosensory and motor pathways in individual animals.

- describe a **connectivity index (CnI)** based on Mn2+ transport
Activation-Induced Manganese-Dependent MRI (AIM)MRI

- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations
Remodelling of neuronal circuitries

Changes in neuronal connectivity after stroke in rats as studied by serial manganese-enhanced MRI

Jet P. van der Zijden, Ona Wu, Annette van der Toom, Tom P. Roeling, Ronald L.A.W. Bleys, and Rick M. Dijkhuizen

Image Science Institute, University Medical Center Utrecht, Biodorflaan 35, 3584 CT Utrecht, The Netherlands

Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo, Neuroimage, 30, 130, 2006

• as a consequence of hyperactivity during seizures

• Sprouting of granule cell axons or mossy fibers is one of the most consistent neuropathologic findings in the hippocampus of animals or humans with temporal lobe epilepsy, providing one of the most extensively characterized examples of activity-induced axonal plasticity in the brain

MEMRI signal in the dentate gyrus and the CA3 subregion of the hippocampus

Intraperitoneal kainic acid injection epilepsy model

Injection of MnCl2 into the entorhinal cortex both in control and kainic acid injected rats

Fig. 1. Enhancement of the mossy fiber pathway in the dentate gyrus (DG)-CA3 region at day 3 after [intracerebral MnCl2 injection] into the entorhinal cortex (EC). Asterisk indicates the location of the injection site. Enhanced signal is also present in the CA1 subfield (arrowhead). Note also the enhancement of the dorsal thalamus in the epileptic animal (open arrow in panel F). Panels are arranged from caudal (A, D) to rostral (C, F). Panels A–C are from a control rat and D–F from a KA-treated rat.
Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo

Jaak Nairismagi,† Asla Pitkänen,‡ Susanna Narkilahti,§ Joanna Huttunen,¶ Risto A. Kauppinen,†,‡ and Olli H.J. Gröhn*,†,

*Department of Biomedical NMR and National Bio-NMR Facility, Vironim Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
†Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
‡Department of Cognitive Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Finland
¶Department of Neurology, Kuopio University Hospital, Kuopio, Finland
*School of Sport and Exercise Sciences, The University of Birmingham, Birmingham, United Kingdom

Manganese enhanced MRI detects mossy fiber sprouting rather than neurodegeneration, gliosis or seizure-activity in the epileptic rat hippocampus

Riikka J. Immonen,† Irina Kharatishvili,‡ Alejandra Sierra,§ Christine Einula,¶ Asla Pitkänen,†,‡ and Olli H.J. Gröhn*,†,

†A.I. Virtanen Institute for Molecular Sciences, Biomedical NMR Research Group, Biomedical Imaging Unit, Department of Neurobiology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
‡A.I. Virtanen Institute for Molecular Sciences, Epilepsy Research Group, Department of Neurobiology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
¶Department of Neurology, Kuopio University Hospital, PO Box 1777, FIN-70211 Kuopio, Finland

ALSO systemic MEMRI can reveal axonal sprouting
Remodelling of neuronal circuits

- Axonal plasticity

- MEMRI is a very useful method to examine network plasticity and regeneration in songbirds

- (review: Van der Linden et al, NMRB, 17, 602, 2004)

Song control system

![Diagram of the song control system](image)
NEUROPLASTICITY in SCS

Delicate balance between adult neurogenesis and cell death, cell volume and cell density changes: volume changes in song control nuclei

Creation of new axonal projections and dendrites: altered neuronal connectivity

Van der Linden A. et al. (2002) Neuroscience, vol
Female starlings implanted with Testosterone or placebo.

In vivo MRI of seasonal volumetric and functional plasticity of song control nuclei in relation to song output in female songbirds.

A. ME-MRI Images

<table>
<thead>
<tr>
<th>Month</th>
<th>RA</th>
<th>Area X</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. 3D volume reconstructions

<table>
<thead>
<tr>
<th>RA</th>
<th>Area X</th>
<th>RA</th>
<th>Area X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 cm scale
Manganese uptake through the nostriles and transport to the OB (1 hour) upon smelling milfoil or no particular smell in different seasons

MEMRI

neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations
Manganese Transfer Index (MTI)

Assessing Transneuronal Dysfunction Utilizing Manganese-Enhanced MRI (MEMRI)

Faridis Serrano, Mitchell Deshazer, Karen D.B. Smith, Jeyarama S. Ananta, Lon J. Wilson, and Robia G. Pautler

Transneuronal efficiency of manganese ion (Mn2) movement is quantified by the manganese transfer index (MTI) as a means to assess overall changes in neuronal function.

Tested with pharmacological agents (MTI decrease)
- Isoflurane: decreases synaptic vesicle release
- Memantine: decreases postsynaptic uptake of Ca2 and Mn2

Applied in knockout mice with neuronal dysfunction
Manganese Transfer Index (MTI)

FIG. 1. a. The image demonstrates the region of interest (ROI) selected in the olfactory bulb (presynaptic) and olfactory cortex (postsynaptic). b. Cartoon explaining the concept of manganese transfer index (MTI). The MTI value assesses the transneuronal efficiency of Mn²⁺ ion and is defined as the ratio of the signal intensity in the postsynaptic neuron in relation to the signal intensity in the presynaptic neuron. MTI = signal intensity (postsynaptic neuron)/signal intensity (presynaptic neuron).

FIG. 4. Graph of the MTI value in age-matched 2 months wildtype (n = 7, white bar) and APP−/− mice (n = 6, black bar) and 12 months wildtype (n = 4, white bar) and age-matched APP−/− mice (n = 3, black bars). The data indicates that there is an age-dependent decrease in the MTI value in the APP−/− mouse model. ***P = 0.0001; **P = 0.0016. Values represent an average in each group and their standard error (SEM).
Axonal Transport Rates

Currently, there are NO OTHER methods available to measure in vivo axonal transport.

In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease

Karen Dell Brown Smith, Verena Kallhoff, Hui Zheng, and Robia G. Pautler

These data indicate that in vivo axonal transport rates decrease prior to plaque formation in the Tg2576 mouse model of AD.
The olfactory system of the mouse provides access to a well-defined white matter projection with minimal invasiveness to the animal.

The olfactory system is targeted early in the time-course of AD making it an ideal target for monitoring disease progression.

A nasal lavage of MnCl₂

The differences between Mn²⁺ treated and control mice (no Mn²⁺) demonstrate the increased signal intensity acquired using MEMRI.

Data were quantified as a function of change in signal intensity (∆SI) over time (min). Slope of line acquired through linear regression.

The slope is reflective of the rate of axonally transported Mn²⁺.
Demonstration of the movement of Mn²⁺ (red) through the olfactory bulb using sequential scans. (B, C) 2 min, (D, E) 12 min, (F, G) 22 min, (H, I) 32 min.

Arrow denotes region of interest located by finding the lengthwise midpoint of the olfactory bulb and extending that point out to the olfactory neuronal layer (ONL).

Axonal Transport Rates

B. gradual and significant decrease with age in the axonal transport rate of the Tg2576 mutant as percent of control.

C. raw data for WT controls and the Tg2576 animals at the three different ages.
Fig. 3. Axonal transport is dependent upon body temperature. At 37.0 °C the SI increase in Mn2+ transport is 0.00679±0.001, n=10 vs. reduced temperature, 30.3 °C, ▲ -0.00131±0.002, n=10. It also shows that the transport rate recovers with a return to normal temperature (0.00589±0.002, n=10). Difference in ΔSI/Time (min) between both 37 °C groups and the 30.3 °C group is significant (*) with a p-value of <0.01, df=29 (one-way ANOVA).
systemic injections of manganese: the least invasive approach

- It has been demonstrated in mice and rats that an intraperitoneal (i.p.), intravenous (i.v.) or subcutaneous (s.c.) injection of MnCl₂ leads to unique MRI contrast revealing the **neuroarchitecture of the brain**

MEMRI provides an efficient and powerful in vivo method
- for analyzing neonatal brain development
- in normal and genetically engineered mice

Figure 1. MBMRI enhancement is maximized 24 h after i.p. injection of MnCl₂. Horizontal T₁-weighted GE images before (a) and 24 h after (b) injection of MnCl₂ in an adult mouse brain show enhancement in olfactory bulb (OB), hippocampus (H), and cerebellum (Cb). Quantitative analysis.
systemic injections of manganese: the least invasive approach

study neural substrate of awake behaviour

- Brain activation in awake small animals can be monitored by performing MRI after the presumed activity has occurred preceded by a systemic injection of manganese

- MEMRI becomes then quite homologue to histological discrimination of IEG expression (cfos) as it highlights areas with prior activity but probably harbours the same drawbacks in terms of specificity

- This method has been proven capable of providing a sensitive and effective method for mapping the mouse auditory brainstem

Yu et al, Nat Neurosci, 8, 961, 2005

- MEMRI for 100 micron resolution tonotopic mapping of the mouse inferior collilulus (IC)

- 21 days old mice whereby the IC showed obvious differences in mice exposed to defined stimuli
 (b) After broadband (1-59 kHz) stimulation
 (c) After high-frequency broadband (20-50 kHz) stimulation
 (d) After 40 kHz pure-tone stimulation: enhancement was restricted to an isofrequency band in excellent agreement with electrophysiological maps

- **Intraperitoneal** administration of MnCl2 allowed longitudinal imaging starting even from early postnatal stages of mouse auditory brain development

An isofrequency band in excellent agreement with electrophysiological maps
neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

Non Neuronal Activity but **Neuropathology Related** Mn uptake
- Mn-binding enzymes
- Microglial activations

Study neural substrate of awake behavior with more invasive approach

Imaging unconditioned fear response with manganese-enhanced MRI (MEMRI)

Wei Chen, Jeff Tenney, Praveen Kulkami, and Jean A. King*

University of Massachusetts Medical School, Department of Psychiatry, Center for Comparative Neuroimaging,
55 Lake Avenue North, Worcester, MA 01655, USA
Animals trained to restraining in magnet
rats catheterised in the femoral vein and the right common carotid artery (CCA)
After surgery, animals were returned to home-cages awake for scent and Mannitol administration.
Rats were infused in the femoral vein with 120 mM MnCl₂ at a rate of ml/h for a total of 30 min in their home cage.
after starting the infusion, a bolus of 20% D-mannitol was given into the right carotid artery at a concentration of 5 ml/kg via the prepared catheters.
One minute after the mannitol injection, rats were exposed to either odorless air (control), lemon (novel/arousing) or TMT (fear-inducing stimulus) until the end of the 30 min infusion period
After infusion awake restrained in MRI

B. Fox (fear) smell activated the unconditional fear pathway: amygdala + hypothalamus
A. Lemon (novel) smell compared to fear-inducing odor demonstrated enhanced uptake in the cingulated and prefrontal cortices. In addition, as expected the hippocampus showed significantly enhanced manganese contrast after novelty exposure.
MEMRI

neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM) MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

‘Non Neuronal Activity’ but ‘Neuropathology Related’ Mn uptake
- Mn-binding enzymes
- Microglial activations

Manganese-Enhanced MRI Detection of Neurodegeneration in Neonatal Hypoxic-Ischemic Cerebral Injury

Yang et al, MRM 59, 1329 (2006)

Jian Yang,1,2 Pek-Lan Khong,3 Yanxin Wang,3 Andrew Chi-Yuen Chu,4 Shu-Leong Ho,4 Pik-To Cheung,8 and Ed X. Wu12

Mn-enhanced MRI (MEMRI) for detecting neurodegenerative processes by monitoring enzymatic activities of Mn-superoxide dismutase (Mn-SOD) and glutamine synthetase (GS), which are Mn-binding enzymes against the oxidative stress and glutamate excitotoxicity in neurodegeneration
Mn-binding enzymes
Yang et al, MRM 59, 1329 (2006)

Mn-superoxide dismutase (Mn-SOD)
Glutamine Synthetase (GS)

Day 49 after Ischemic Insult

MEMRI
neuronal connectivity and activation

Activation-Induced Manganese-Dependent MRI (AIM)-MRI
- Dynamic AIM MRI: DAIM MRI

Tract tracing with MEMRI
- Tract tracing s.s.
- Activity dependent MEMRI
- Dynamic MEMRI: DMEMRI
- Neuronal Connectivity
- Remodelling of neuronal circuitries
- Manganese Transfer Index
- Axonal Transport Rates

Study neural substrate of awake behavior
- the least invasive approach
- the most invasive approach

'Non Neuronal Activity' but 'Neuropathology Related' Mn uptake
- Mn-binding enzymes
- Microglial activations and astrocytes
• **Glial cells are non neuronal components of the CNS that interact closely with neurons and with each other**

• **There are 3 different types:**
 astrocytes, oligodendrocytes and microglial cells

• **They play an important role in neuroprotection, inflammation...**

Glial cells, particularly astrocytes represent a “sink” for brain manganese

• Contribute significantly to signal enhancements after manganese administration
 Unlike neurons, astrocytes have the ability to concentrate Mn2+ at levels 50-fold higher than the culture media

• Areas of high astrocyte density include the hypothalamus and hippocampus
 Areas with low astrocyte density include the cerebral cortex, neostriatum, midbrain, medulla oblongata, and cerebellum

• This could only partly explain the observed differential contrast enhancements in the brain after systemic injection
Neuropathologically, CTSD (Cathepsin D) deficient mice (CTSD_/_) are characterized by selective neuronal degeneration, gliosis and accumulation of autofluorescent proteinaceous storage material in neurons.

MEMRI and histological stainings revealed that the hyperintense signal areas in MEMRI matched perfectly with areas of microglial activation in the brains of CTSD_/_ mice at the terminal disease stage.
Conclusion MEMRI in brain research

- the majority of reported MEMRI applications focuses on activity, connectivity and mapping of somatosensory neuronal circuits

- MEMRI harbours great potential for the study of neuronal development, activity and plasticity in different small animal models

- Only animal work: Manganese based contrast agents in the clinic (manganese dipyridoxal diphosphate (MnDPDP)) for liver imaging: Mn is chelated > loose all the advantages of the ion Mn2+ capacities for MRI.
Conclusion MEMRI in brain research

• *in vivo* non invasive tool to link behaviour, performed in a non restricted environment and while awake, with its neuronal substrate

• behavioural phenotyping in neurodegenerative mice models > inserting MEMRI into protocols for phenotyping the neural substrate of the observed modified behaviour

Literature

• book chapter :

• Book Chapter:
 Advances in Neurobiology
 Volume Title: Neural Metabolism In Vivo
 Editors: In-Young Choi, Ph.D. and Rolf Gruetter, Ph.D.
 Contrast agents, relaxation, in vivo calcium imaging
 by A. Van der Linden, V. Van Meir, D. Longo and S. Aime.

• Annemie.vanderlinden@ua.ac.be